scholarly journals External field dependence of the correlation lengths in the three-dimensional O(4) model

2004 ◽  
Vol 129-130 ◽  
pp. 783-785 ◽  
Author(s):  
J Engels ◽  
L Fromme ◽  
M Seniuch
1991 ◽  
Vol 24 (3) ◽  
pp. 735-740
Author(s):  
Jae Woo Lee ◽  
Ho Chui Kim ◽  
Jong-Jean Kim

2014 ◽  
Vol 8 (6) ◽  
pp. 2255-2274 ◽  
Author(s):  
N. Calonne ◽  
F. Flin ◽  
C. Geindreau ◽  
B. Lesaffre ◽  
S. Rolland du Roscoat

Abstract. We carried out a study to monitor the time evolution of microstructural and physical properties of snow during temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient in the vertical direction for 3 weeks in a cold room, and regularly sampled in order to obtain a series of three-dimensional (3-D) images using X-ray microtomography. A large set of properties was then computed from this series of 3-D images: density, specific surface area, correlation lengths, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical estimates (self-consistent estimates and dilute beds of spheroids) based on the snow density, and the size and anisotropy of the microstructure through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the micro- or macroscale.


2000 ◽  
Vol 174 ◽  
pp. 281-285 ◽  
Author(s):  
J. C. Muzzio ◽  
F. C. Wachlin ◽  
D. D. Carpintero

AbstractWe have studied the motion of massless particles (stars) bound to a stellar system (a galactic satellite) that moves on a circular orbit in an external field (a galaxy). A large percentage of the stellar orbits turned out to be chaotic, contrary to what happens in the usual restricted three–body problem of celestial mechanics where most of the orbits are regular. The discrepancy is probably due to three facts: 1) Our study is not limited to orbits on the main planes of symmetry, but considers three–dimensional motion; 2) The force exerted by the satellite goes to zero (rather than to infinity) at the center of the satellite; 3) The potential of the satellite is triaxial, rather than spherical.


2020 ◽  
Author(s):  
Qinzhuo Liao ◽  
Gang Lei ◽  
Shirish Patil

<p>We propose an efficient analytical upscaling method to compute the equivalent conductivity tensor for elliptic equations in three-dimensional space. Our approach uses perturbation expansion and Fourier analysis, and considers heterogeneity, anisotropy and geometry of coarse gridblocks. Through low-order approximation, the derived analytical solution accurately approximates the central-difference numerical solution with periodic boundary conditions. Numerical tests are performed to demonstrate the capability and efficiency of this analytical approach in upscaling fluid flow in heterogeneous formations. We test the method in synthetic examples and benchmark cases with both Gaussian random fields and channelized non-Gaussian fields. In addition, we examine the impact of each parameter on the upscaled conductivity, and investigate the sensitivity of the variance and correlation lengths to the coefficients. We also indicate how to extend this approach to multiphase flow problems.</p>


2015 ◽  
Vol 342 (1) ◽  
pp. 189-216 ◽  
Author(s):  
Rupert L. Frank ◽  
Christian Hainzl ◽  
Robert Seiringer ◽  
Jan Philip Solovej

2009 ◽  
Author(s):  
I. V. Pylyuk ◽  
M. P. Kozlovskii ◽  
Yurij Holovatch ◽  
Bertrand Berche ◽  
Nikolai Bogolyubov ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Teerawat Monnor ◽  
Yongyut Laosiritaworn ◽  
Rattikorn Yimnirun

This work performed Preisach modeling on hysteresis loops, where the contributions of Preisach density characteristics on hysteresis reversals were investigated. Specifically, the three-dimensional Gaussian-distribution function was used to construct the Preisach densities for extracting the associated hysteresis loops. In particular, the influences of three key Gaussian Preisach density characteristics (i.e., density sharpness, density center, and splitting densities) on hysteresis behavior were examined. It was found that sharper density induces more harmonized domain switching, so polarization derivative is enhanced at the coercivity, while the density center indicates the range of external field at which most switching occurs. Moreover, the splitting of the density was found to represent pinching in hysteresis loops, where material tends to actively respond in two different ranges of external field. Consequently, based on these results, significant hysteresis behavior can be revealed using minimal parameters via appropriate mathematical function; that is, another step enhances the fundamental understanding in the hysteresis topic using the Preisach framework.


Sign in / Sign up

Export Citation Format

Share Document