snow properties
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 53)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 16 (1) ◽  
pp. 87-101
Author(s):  
Julien Meloche ◽  
Alexandre Langlois ◽  
Nick Rutter ◽  
Alain Royer ◽  
Josh King ◽  
...  

Abstract. Topography and vegetation play a major role in sub-pixel variability of Arctic snowpack properties but are not considered in current passive microwave (PMW) satellite SWE retrievals. Simulation of sub-pixel variability of snow properties is also problematic when downscaling snow and climate models. In this study, we simplified observed variability of snowpack properties (depth, density, microstructure) in a two-layer model with mean values and distributions of two multi-year tundra dataset so they could be incorporated in SWE retrieval schemes. Spatial variation of snow depth was parameterized by a log-normal distribution with mean (μsd) values and coefficients of variation (CVsd). Snow depth variability (CVsd) was found to increase as a function of the area measured by a remotely piloted aircraft system (RPAS). Distributions of snow specific surface area (SSA) and density were found for the wind slab (WS) and depth hoar (DH) layers. The mean depth hoar fraction (DHF) was found to be higher in Trail Valley Creek (TVC) than in Cambridge Bay (CB), where TVC is at a lower latitude with a subarctic shrub tundra compared to CB, which is a graminoid tundra. DHFs were fitted with a Gaussian process and predicted from snow depth. Simulations of brightness temperatures using the Snow Microwave Radiative Transfer (SMRT) model incorporating snow depth and DHF variation were evaluated with measurements from the Special Sensor Microwave/Imager and Sounder (SSMIS) sensor. Variation in snow depth (CVsd) is proposed as an effective parameter to account for sub-pixel variability in PMW emission, improving simulation by 8 K. SMRT simulations using a CVsd of 0.9 best matched CVsd observations from spatial datasets for areas > 3 km2, which is comparable to the 3.125 km pixel size of the Equal-Area Scalable Earth (EASE)-Grid 2.0 enhanced resolution at 37 GHz.


2021 ◽  
Vol 13 (21) ◽  
pp. 4404
Author(s):  
Alexander Kokhanovsky ◽  
Simon Gascoin ◽  
Laurent Arnaud ◽  
Ghislain Picard

We proposed a simple algorithm to retrieve the total ozone column and snow properties (spectral albedo and effective light absorption path) using the high spatial resolution single–view MSI/S-2 measurements over Antarctica. In addition, the algorithm allows the retrieval of the snow grain size on a scale of 10–20 m. This algorithm should be useful for the understanding of intra-pixel total ozone and snow albedo variability in complement to satellite observations performed on a much coarser spatial resolution scale (0.3–1 km and even larger spatial scales).


2021 ◽  
Author(s):  
Juha Lemmetyinen ◽  
Juval Cohen ◽  
Anna Kontu ◽  
Juho Vehviläinen ◽  
Henna-Reetta Hannula ◽  
...  

Abstract. The European Space Agency SnowSAR instrument is a side looking, dual polarized (VV/VH), X/Ku band synthetic aperture radar (SAR), operable from a small aircraft. Between 2010 and 2013, the instrument was deployed at several sites in Northern Finland, Austrian Alps, and northern Canada. The purpose of the airborne campaigns was to measure the backscattering properties of snow-covered terrain to support the development of snow water equivalent retrieval techniques using SAR. SnowSAR was deployed in Sodankylä, Northern Finland for a single flight mission in March 2011 and twelve missions at two sites (tundra and boreal forest) in the winter of 2011–2012. Over the Austrian Alps, three flight missions were performed between November 2012 and February 2013 over three sites located in different elevation zones, representing a montane valley, Alpine tundra, and a glacier environment. In Canada, a total of two missions were flown in March and April 2013, over sites in the Trail Valley Creek watershed, Northwest Territories, representative of the tundra snow regime. This paper introduces the airborne SAR data, as well as coincident in situ information on land cover, vegetation and snow properties. To facilitate easy access to the data record the datasets described here are deposited in a permanent data repository (https://doi.pangaea.de/10.1594/PANGAEA.933255; Lemmetyinen et al., 2021). A temporary link to access the data without login information is provided for reviewers of this manuscript: https://www.pangaea.de/tok/e8c562c3c8a15ac34daa83d00c76fcb347330884.


2021 ◽  
Author(s):  
Victoria R. Dutch ◽  
Nick Rutter ◽  
Leanne Wake ◽  
Melody Sandells ◽  
Chris Derksen ◽  
...  

Abstract. Snowpack microstructure controls the transfer of heat to, and the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two different winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow MicroPenetrometer profiles allowed snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 °C). Bias-correction of the simulated thermal conductivity (relative to field measurements) improved simulated soil temperatures (RMSE = 2.1 °C). Multiple linear regression shows the required correction factor is strongly related to snow depth (R2 = 0.77, RMSE = 0.066) particularly early in the winter. Furthermore, CLM simulations did not adequately represent the observed high proportions of depth hoar. Addressing uncertainty in simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures act as a control on subnivean soil respiration, and hence impact Arctic winter carbon fluxes and budgets.


2021 ◽  
Author(s):  
Louis Védrine ◽  
Xingyue Li ◽  
Johan Gaume

Abstract. Mountain forests provide natural protection against avalanches. They can both prevent avalanche formation in release zones and reduce avalanche mobility in runout areas. Although the braking effect of forests has been previously explored through global statistical analyses on documented avalanches, little is known about the mechanism of snow detrainment in forests for small and medium avalanches. In this study, we investigate the detrainment and braking of snow avalanches in forested terrain, by performing three-dimensional simulations using the Material Point Method (MPM) and a large strain elastoplastic snow constitutive model based on Critical State Soil Mechanics. First, the snow internal friction is evaluated using existing field measurements based on the detrainment mass, showing the feasibility of the numerical framework and offering a reference case for further exploration of different snow types. Then, we systematically investigate the influence of snow properties and forest parameters on avalanche characteristics. Our results suggest that, for both dry and wet avalanches, the detrainment mass decreases with the square of the avalanche front velocity before it reaches a plateau value. Furthermore, the detrainment mass significantly depends on snow properties. It can be as much as ten times larger for wet snow compared to dry snow. By examining the effect of forest configurations, it is found that forest density and tree diameter have cubic and square relations with the detrainment mass, respectively. The outcomes of this study may contribute to the development of improved formulations of avalanche–forest interaction models in popular operational simulation tools and thus improve hazard assessment for alpine geophysical mass flows in forested terrain.


Author(s):  
Michael Hindemith ◽  
Jonas Heidelberger ◽  
Matthias Wangenheim

ABSTRACT While in nature, snow properties change from day to day or even minute by minute, one of the great advantages of lab tests is the stability and reproducibility of testing conditions. In our labs at the Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, we currently run three test rigs that are able to conduct tests with tire tread blocks on snow and ice tracks [1,2]: High-Speed Linear Tester (HiLiTe) [3], Portable Friction Tester (PFT), and Reproducible Tread Block Mechanics in Lab (RepTiL). In the past years, we have run a project on the influence of snow track properties on friction and traction test results with those test rigs. In this article, we will present a first excerpt of the results concentrating on the RepTiL test rig. Because this rig reproduces the movement of rolling tire tread blocks [2], we executed a test campaign with special samples for the analysis of snow friction mechanics. We evaluated penetration into the snow, maximum longitudinal force level, and longitudinal force gradient. On the other hand, we varied the snow density while preparing our tracks to assess the influence of the snow track density on the friction mechanics. In parallel, we have accompanied our experiments with discrete element method simulations to better visualize and understand the physics behind the interaction between snow and samples. The simulation shows the distribution of induced stress within the snow tracks and resulting movement of snow particles. Hypotheses for the explanation of the friction behavior in the experiments were confirmed. Both tests and simulations showed, with good agreement, a strong influence of snow density and sample geometry.


2021 ◽  
Author(s):  
Taylor Hodgdon ◽  
Anthony Fuentes ◽  
Brian Quinn ◽  
Bruce Elder ◽  
Sally Shoop

With changing conditions in northern climates it is crucial for the United States to have assured mobility in these high-latitude regions. Winter terrain conditions adversely affect vehicle mobility and, as such, they must be accurately characterized to ensure mission success. Previous studies have attempted to remotely characterize snow properties using varied sensors. However, these studies have primarily used satellite-based products that provide coarse spatial and temporal resolution, which is unsuitable for autonomous mobility. Our work employs the use of an Unmanned Aeriel Vehicle (UAV) mounted hyperspectral camera in tandem with machine learning frameworks to predict snow surface properties at finer scales. Several machine learning models were trained using hyperspectral imagery in tandem with in-situ snow measurements. The results indicate that random forest and k-nearest neighbors models had the lowest Mean Absolute Error for all surface snow properties. A pearson correlation matrix showed that density, grain size, and moisture content all had a significant positive correlation to one another. Mechanically, density and grain size had a slightly positive correlation to compressive strength, while moisture had a much weaker negative correlation. This work provides preliminary insight into the efficacy of using hyperspectral imagery for characterizing snow properties for autonomous vehicle mobility.


Author(s):  
Alexander Kokhanovsky ◽  
Simon Gascoin ◽  
Laurent Arnaud ◽  
Ghislain Picard

We have proposed a simple algorithm to retrieve the total ozone column and snow properties (spectral albedo and effective light absorption path) using the high spatial resolution single – view MSI/S-2 measurements over Antarctica.


Author(s):  
Simon Blessing ◽  
Ralf Giering

Multi- and hyper-spectral, multi-angular top-of-canopy reflectance data call for an efficient retrieval system which can improve the retrieval of standard canopy parameters (as albedo, LAI, fAPAR), and exploit the information to retrieve additional parameters (e.g. leaf pigments). Furthermore consistency between the retrieved parameters and quantification of uncertainties are required for many applications. % (2) methods We present a retrieval system for canopy and sub-canopy parameters (OptiSAIL), which is based on a model comprising SAIL, PROSPECT-D (leaf properties), TARTES (snow properties), a soil model (BRDF, moisture), and a cloud contamination model. The inversion is gradient based and uses codes % created by Automatic Differentiation. The full per pixel covariance-matrix of the retrieved parameters is computed. For this demonstration, single observation data from the Sentinel-3 SY_2_SYN (synergy) product is used. The results are compared with the MODIS 4-day LAI/fPAR product and PhenoCam site photography. OptiSAIL produces generally consistent and credible results, at least matching the quality of the technically quite different MODIS product. For most of the sites, the PhenoCam images support the OptiSAIL retrievals. The system is computationally efficient with a rate of 150 pixel per second (7 millisecond per pixel) for a single thread on a current desktop CPU using observations on 26 bands. Not all of the model parameters are well determined in all situations. Significant correlations between the parameters are found, which can change sign and magnitude over time. OptiSAIL appears to meet the design goals, puts real-time processing with this kind of system into reach, seamlessly extends to hyper-spectral and multi-sensor retrievals, and promises to be a good platform for sensitivity studies. The incorporated cloud and snow detection adds to the robustness of the system.


2021 ◽  
Vol 13 (15) ◽  
pp. 2922
Author(s):  
Yang Song ◽  
Patrick D. Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 snow telemetry (SNOTEL) sites in Alaska were used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018–2019) of a high-resolution radar/rain gauge data (Stage IV) product was also utilized to give insights into the scaling differences between various products. The outcomes were used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range within which other products can be assessed. The time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tended to overestimate snow accumulation in the study area, while the current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that correction factors applied to rain gauges are effective for improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill for capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill for capturing the geographical distribution of snowfall and precipitation accumulation; therefore, bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.


Sign in / Sign up

Export Citation Format

Share Document