Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: Studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase

2002 ◽  
Vol 153 (10) ◽  
pp. 667-677 ◽  
Author(s):  
Mohammad Aboulwafa ◽  
Milton H. Saier
2009 ◽  
Vol 191 (9) ◽  
pp. 3086-3094 ◽  
Author(s):  
Sharon Yagur-Kroll ◽  
Ayelet Ido ◽  
Orna Amster-Choder

ABSTRACT The Escherichia coli BglF protein, a sugar permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), catalyzes concomitant transport and phosphorylation of β-glucosides across the cytoplasmic membrane. Despite intensive studies of PTS permeases, the mechanism that couples sugar translocation to phosphorylation and the nature of the translocation apparatus are poorly understood. Like many PTS permeases, BglF consists of a transmembrane domain, which in addition to transmembrane helices (TMs) contains a big cytoplasmic loop and two hydrophilic domains, one containing a conserved cysteine that phosphorylates the incoming sugar. We previously reported that the big hydrophilic loop, which connects TM VI to TM VII, contains regions that alternate between facing-in and facing-out states and speculated that it is involved in creating the sugar translocation channel. In the current study we used [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET), a membrane-impermeative thiol-specific reagent, to identify sites that are involved in sugar transport. These sites map to the regions that border the big loop. Using cross-linking reagents that penetrate the cell, we could demonstrate spatial proximity between positions at the center of the big loop and the phosphorylation site, suggesting that the two regions come together to execute sugar phosphotransfer. Additionally, positions on opposite ends of the big loop were found to be spatially close. Cys accessibility analyses suggested that the sugar induces a change in this region. Taken together, our results demonstrate that the big loop participates in creating the sugar pathway and explain the observed coupling between translocation of PTS sugars from the periplasm to the cytoplasm and their phosphorylation.


2005 ◽  
Vol 187 (9) ◽  
pp. 2974-2982 ◽  
Author(s):  
Laura I. Álvarez-Añorve ◽  
Mario L. Calcagno ◽  
Jacqueline Plumbridge

ABSTRACT Wild-type Escherichia coli grows more slowly on glucosamine (GlcN) than on N-acetylglucosamine (GlcNAc) as a sole source of carbon. Both sugars are transported by the phosphotransferase system, and their 6-phospho derivatives are produced. The subsequent catabolism of the sugars requires the allosteric enzyme glucosamine-6-phosphate (GlcN6P) deaminase, which is encoded by nagB, and degradation of GlcNAc also requires the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase. We investigated various factors which could affect growth on GlcN and GlcNAc, including the rate of GlcN uptake, the level of induction of the nag operon, and differential allosteric activation of GlcN6P deaminase. We found that for strains carrying a wild-type deaminase (nagB) gene, increasing the level of the NagB protein or the rate of GlcN uptake increased the growth rate, which showed that both enzyme induction and sugar transport were limiting. A set of point mutations in nagB that are known to affect the allosteric behavior of GlcN6P deaminase in vitro were transferred to the nagB gene on the Escherichia coli chromosome, and their effects on the growth rates were measured. Mutants in which the substrate-induced positive cooperativity of NagB was reduced or abolished grew even more slowly on GlcN than on GlcNAc or did not grow at all on GlcN. Increasing the amount of the deaminase by using a nagC or nagA mutation to derepress the nag operon improved growth. For some mutants, a nagA mutation, which caused the accumulation of the allosteric activator GlcNAc6P and permitted allosteric activation, had a stronger effect than nagC. The effects of the mutations on growth in vivo are discussed in light of their in vitro kinetics.


1992 ◽  
Vol 70 (3-4) ◽  
pp. 242-246 ◽  
Author(s):  
J. W. Anderson ◽  
E. B. Waygood ◽  
M. H. Saier Jr. ◽  
J. Reizer

The phosphohydrolysis properties of the following phosphoprotein intermediates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) were investigated: enzyme I, HPr, and the IIAGlc domain of the glucose enzyme II of Bacillus subtilis; and IIAGlc (fast and slow forms) of Escherichia coli. The phosphohydrolysis properties were also studied for the site-directed mutant H68A of B. subtilis IIAGlc. Several conclusions were reached. (i) The phosphohydrolysis properties of the homologous phosphoprotein intermediates of B. subtilis and E. coli are similar. (ii) These properties deviate from those of isolated Nδ1- and Nε2-phosphohistidine indicating the participation of neighbouring residues at the active sites of these proteins. (iii) The rates of phosphohydrolysis of the H68A mutant of B. subtilis IIAGlc were reduced compared with the wild-type protein, suggesting that both His-83 and His-68 are present at the active site of wild-type IIAGlc. (iv) The removal of seven N-terminal residues of E. coli IIAGlc reduced the rates of phosphohydrolysis between pH 5 and 8.Key words: phosphoenolpyruvate:sugar phosphotransferase system, phosphoproteins, phosphohistidine, phosphorylation, sugar transport.


2007 ◽  
Vol 189 (13) ◽  
pp. 4603-4613 ◽  
Author(s):  
Birte Reichenbach ◽  
Daniel A. Breustedt ◽  
Jörg Stülke ◽  
Bodo Rak ◽  
Boris Görke

ABSTRACT The histidine protein (HPr) is the energy-coupling protein of the phosphoenolpyruvate (PEP)-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes sugar transport in many bacteria. In its functions, HPr interacts with a number of evolutionarily unrelated proteins. Mainly, it delivers phosphoryl groups from enzyme I (EI) to the sugar-specific transporters (EIIs). HPr proteins of different bacteria exhibit almost identical structures, and, where known, they use similar surfaces to interact with their target proteins. Here we studied the in vivo effects of the replacement of HPr and EI of Escherichia coli with the homologous proteins from Bacillus subtilis, a gram-positive bacterium. This replacement resulted in severe growth defects on PTS sugars, suggesting that HPr of B. subtilis cannot efficiently phosphorylate the EIIs of E. coli. In contrast, activation of the E. coli BglG regulatory protein by HPr-catalyzed phosphorylation works well with the B. subtilis HPr protein. Random mutations were introduced into B. subtilis HPr, and a screen for improved growth on PTS sugars yielded amino acid changes in positions 12, 16, 17, 20, 24, 27, 47, and 51, located in the interaction surface of HPr. Most of the changes restore intermolecular hydrophobic interactions and salt bridges normally formed by the corresponding residues in E. coli HPr. The residues present at the targeted positions differ between HPrs of gram-positive and -negative bacteria, but within each group they are highly conserved. Therefore, they may constitute a signature motif that determines the specificity of HPr for either gram-negative or -positive EIIs.


Sign in / Sign up

Export Citation Format

Share Document