Functioning and neuronal viability of the anterior cingulate neurons following antipsychotic treatment: MR-spectroscopic imaging in chronic schizophrenia

2002 ◽  
Vol 12 (2) ◽  
pp. 145-152 ◽  
Author(s):  
D Braus
Author(s):  
Xiaojun Wu ◽  
Rammohan Shukla ◽  
Khaled Alganem ◽  
Erica Depasquale ◽  
James Reigle ◽  
...  

AbstractWhile the pathophysiology of schizophrenia has been extensively investigated using homogenized postmortem brain samples, few studies have examined changes in brain samples with techniques that may attribute perturbations to specific cell types. To fill this gap, we performed microarray assays on mRNA isolated from anterior cingulate cortex (ACC) superficial and deep pyramidal neurons from 12 schizophrenia and 12 control subjects using laser capture microdissection. Among all the annotated genes, we identified 134 significantly increased and 130 decreased genes in superficial pyramidal neurons, while 93 significantly increased and 101 decreased genes were found in deep pyramidal neurons, in schizophrenia compared to control subjects. In these differentially expressed genes, we detected lamina-specific changes of 55 and 31 genes in superficial and deep neurons in schizophrenia, respectively. Gene set enrichment analysis (GSEA) was applied to the entire pre-ranked differential expression gene lists to gain a complete pathway analysis throughout all annotated genes. Our analysis revealed over-represented groups of gene sets in schizophrenia, particularly in immunity and synapse related pathways in pyramidal neurons, suggesting the disruption of these pathways plays an important role in schizophrenia. We also detected pathways previously demonstrated in schizophrenia pathophysiology, including cytokine and chemotaxis, post-synaptic signaling, and glutamatergic synapses. In addition, we observed several novel pathways, including ubiquitin-independent protein catabolic process. By comparing our differential expression gene profiles with 51 antipsychotic treatment datasets, we demonstrated that our results were not influenced by antipsychotic treatment of our subjects. Taken together, we found pyramidal neuron-specific changes in neuronal immunity, synaptic dysfunction, and olfactory dysregulation in schizophrenia, providing new insights for the cell-subtype specific pathophysiology of chronic schizophrenia.


2001 ◽  
Vol 120 (5) ◽  
pp. A116-A116
Author(s):  
H SCHLEMMER ◽  
T SAWATZKI ◽  
I DORNACHER ◽  
S SAMMET ◽  
M HELLENSCHMIDT ◽  
...  

1994 ◽  
Vol 31 (2) ◽  
pp. 185
Author(s):  
Yong Whee Bahk ◽  
Kyung Sub Shinn ◽  
Tae Suk Suh ◽  
Bo Young Choe ◽  
Kyo Ho Choi

2019 ◽  
Vol 50 (13) ◽  
pp. 2182-2193 ◽  
Author(s):  
Kirsten B. Bojesen ◽  
Bjørn H. Ebdrup ◽  
Kasper Jessen ◽  
Anne Sigvard ◽  
Karen Tangmose ◽  
...  

AbstractBackgroundPoor response to dopaminergic antipsychotics constitutes a major challenge in the treatment of psychotic disorders and markers for non-response during first-episode are warranted. Previous studies have found increased levels of glutamate and γ-aminobutyric acid (GABA) in non-responding first-episode patients compared to responders, but it is unknown if non-responders can be identified using reference levels from healthy controls (HCs).MethodsThirty-nine antipsychotic-naïve patients with first-episode psychosis and 36 matched HCs underwent repeated assessments with the Positive and Negative Syndrome Scale and 3T magnetic resonance spectroscopy. Glutamate scaled to total creatine (/Cr) was measured in the anterior cingulate cortex (ACC) and left thalamus, and levels of GABA/Cr were measured in ACC. After 6 weeks, we re-examined 32 patients on aripiprazole monotherapy and 35 HCs, and after 26 weeks we re-examined 30 patients on naturalistic antipsychotic treatment and 32 HCs. The Andreasen criteria defined non-response.ResultsBefore treatment, thalamic glutamate/Cr was higher in the whole group of patients but levels normalized after treatment. ACC levels of glutamate/Cr and GABA/Cr were lower at all assessments and unaffected by treatment. When compared with HCs, non-responders at week 6 (19 patients) and week 26 (16 patients) had higher baseline glutamate/Cr in the thalamus. Moreover, non-responders at 26 weeks had lower baseline GABA/Cr in ACC. Baseline levels in responders and HCs did not differ.ConclusionGlutamatergic and GABAergic abnormalities in antipsychotic-naïve patients appear driven by non-responders to antipsychotic treatment. If replicated, normative reference levels for glutamate and GABA may aid estimation of clinical prognosis in first-episode psychosis patients.


1998 ◽  
Vol 39 (5) ◽  
pp. 749-753 ◽  
Author(s):  
Christine I. Haupt ◽  
Andreas P. Kiefer ◽  
Andrew A. Maudsley

Sign in / Sign up

Export Citation Format

Share Document