differential expression gene
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 8)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 1 ◽  
Author(s):  
Koichi Kitao ◽  
Aoi Sumiyoshi ◽  
So Nakagawa ◽  
Yuki Matsumoto ◽  
Takuya Mizuno ◽  
...  

Endogenous retroviruses (ERVs) are remnants of ancestral retroviruses that infected host germ cells in the past. Most ERVs are thought to be non-functional elements, but some ERVs retain open reading frames (ORFs) capable of expressing proteins. The proteins encoded by ERV-ORFs have potential roles in oncogenesis; however, studies on mammals other than humans and mice are limited. Here, we identified ERV-derived genes expressed in canine oral malignant melanoma (OMM). We identified 11 ERV-derived genes in our OMM samples. Differential expression gene analysis revealed that four ERV-derived genes (PEG10, LOC102155597, and two newly identified genes) were upregulated in OMM compared to healthy tissues. PEG10 is a conserved long terminal repeat (LTR)-type retrotransposon-derived gene among mammals and is involved in human cancers. LOC102155597 is a retroviral env gene conserved in Carnivora. This Env protein harbors an immunosuppressive domain, implying the potential adverse effects on the immune system. While the production of viral particles from ERVs has been reported in human and mouse melanoma, we found no ERV-derived genes having the potential to produce viral particles. These results provide insights into the different and conserved features of ERV-derived genes in mammalian melanoma.


Author(s):  
AM Isaacs ◽  
S Morton ◽  
M Movassagh ◽  
Q Zhang ◽  
C Hehnly ◽  
...  

Background: Proteogenomics, the integration of proteomics and RNASeq expands the discovery landscape for candidate expressed gene networks to obtain novel insights into host response in post-infectious hydrocephalus (PIH). We examined the cerebrospinal fluid (CSF) of infants with PIH, and case controlled against age-matched infants with non-postinfectious hydrocephalus (NPIH) to probe the molecular mechanisms of PIH, leveraging molecular identification of bacterial and viral pathogens. Methods: Ventricular CSF samples of 100 infants ≤ 3 months of age with PIH (n=64) and NPIH (n=36) were analyzed with proteomics and RNASeq. 16S rRNA/DNA sequencing and virome capture identified Paenibacillus spp. and cytomegalovirus as dominant pathogenetic bacteria implicated in our PIH cohort. Proteogenomics assessed differential expression, gene set enrichment and activated gene pathways. Results: Of 616 proteins and 11,114 genes, there was enrichment for the immune system, cell-cell junction signaling and response to oxidative stress. Proteogenomics yielded 33 functionally and genetically associated gene sets related to neutrophil activation, platelet activation, and cytokines (interleukins and interferon) signaling. Conclusions: We identified PIH patients with severe disease at time of hydrocephalus surgery, to have differential expression of proteins/genes involved in neuroinflammation, ependymal barrier integrity and reaction to oxidative stress. Further studies are needed to examine those proteins/genes as biomarkers for PIH.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Liguo Ye ◽  
Long Wang ◽  
Ji’an Yang ◽  
Ping Hu ◽  
Chunyu Zhang ◽  
...  

Abstract Background As an important part of tumor immunotherapy for adjunct, therapeutic tumor vaccines have been effective against multiple solid cancers, while their efficacy against lower grade glioma (LGG) remains undefined. Immunophenotyping of tumors is an essential tool to evaluate the immune function of patients with immunodeficiency or autoimmunity. Therefore, this study aims to find the potential tumor antigen of LGG and identify the suitable population for cancer vaccination based on the immune landscape. Method The genomic and clinical data of 529 patients with LGG were obtained from TCGA, the mRNA_seq data of normal brain tissue were downloaded from GTEx. Differential expression gene and mutation analysis were performed to screen out potential antigens, K-M curves were carried out to investigate the correlation between the level of potential antigens and OS and DFS of patients. TIMER dataset was used to explore the correlation between genes and immune infiltrating cells. Immunophenotyping of 529 tumor samples was based on the single-sample gene sets enrichment analysis. Cibersort and Estimate algorithm were used to explore the tumor immune microenvironment characteristics in each immune subtype. Weighted gene co-expression network analysis (WGCNA) clustered immune-related genes and screened the hub genes, and pathway enrichment analyses were performed on the hub modules related to immune subtype in the WGCNA. Results Selecting for the mutated, up-regulated, prognosis- and immune-related genes, four potential tumor antigens were identified in LGG. They were also significantly positively associated with the antigen-presenting immune cells (APCs). Three robust immune subtypes, IS1, IS2 and IS3, represented immune status "desert", "immune inhibition", and "inflamed" respectively, which might serve as a predictive parameter. Subsequently, clinicopathological features, including the codeletion status of 1p19q, IDH mutation status, tumor mutation burden, tumor stemness, etc., were significantly different among subtypes. Conclusion FCGBP, FLNC, TLR7, and CSF2RA were potential antigens for developing cancer vaccination, and the patients in IS3 were considered the most suitable for vaccination in LGG.


2021 ◽  
Author(s):  
Hayat Ali Alafari ◽  
Magda Abdelgawad

Abstract BackgroundWithin their natural habitat, plants are subjected to abiotic stresses that include heat stress. In the current study, the effect of 4h, 24h and 48h of heat stress on Tetraena propinqua ssp. migahidii seedling’s protein profile and proteomic analyses were investigated. ResultsTotal soluble protein SDS-PAGE profile showed 18-protein bands downregulated at 4h and 48h, however, 20-protein bands were upregulated at 24h of heat stress. A proteomic analysis showed that 81 and 59 targets are involved in gene and protein expression respectively. ConclusionsThe genes and proteins involved in transcription, translation, photosynthesis, transport and other unknown metabolic processes, were differentially expressed under treatments of heat stress. These findings provide insights into the molecular mechanisms related to heat stress, in addition to its influence on the physiological traits of T. propinqua seedlings. Heat stress mediated differential regulation genes indicate a role in development and stress response of T. propinqua. The candidate dual specificity genes identified in this study paves way for more molecular analysis of up- and down-regulation.


Author(s):  
Xiaojun Wu ◽  
Rammohan Shukla ◽  
Khaled Alganem ◽  
Erica Depasquale ◽  
James Reigle ◽  
...  

AbstractWhile the pathophysiology of schizophrenia has been extensively investigated using homogenized postmortem brain samples, few studies have examined changes in brain samples with techniques that may attribute perturbations to specific cell types. To fill this gap, we performed microarray assays on mRNA isolated from anterior cingulate cortex (ACC) superficial and deep pyramidal neurons from 12 schizophrenia and 12 control subjects using laser capture microdissection. Among all the annotated genes, we identified 134 significantly increased and 130 decreased genes in superficial pyramidal neurons, while 93 significantly increased and 101 decreased genes were found in deep pyramidal neurons, in schizophrenia compared to control subjects. In these differentially expressed genes, we detected lamina-specific changes of 55 and 31 genes in superficial and deep neurons in schizophrenia, respectively. Gene set enrichment analysis (GSEA) was applied to the entire pre-ranked differential expression gene lists to gain a complete pathway analysis throughout all annotated genes. Our analysis revealed over-represented groups of gene sets in schizophrenia, particularly in immunity and synapse related pathways in pyramidal neurons, suggesting the disruption of these pathways plays an important role in schizophrenia. We also detected pathways previously demonstrated in schizophrenia pathophysiology, including cytokine and chemotaxis, post-synaptic signaling, and glutamatergic synapses. In addition, we observed several novel pathways, including ubiquitin-independent protein catabolic process. By comparing our differential expression gene profiles with 51 antipsychotic treatment datasets, we demonstrated that our results were not influenced by antipsychotic treatment of our subjects. Taken together, we found pyramidal neuron-specific changes in neuronal immunity, synaptic dysfunction, and olfactory dysregulation in schizophrenia, providing new insights for the cell-subtype specific pathophysiology of chronic schizophrenia.


2020 ◽  
Vol 36 (8) ◽  
pp. 2581-2583 ◽  
Author(s):  
Sophia C Tintori ◽  
Patrick Golden ◽  
Bob Goldstein

Abstract Summary Differential Expression Gene Explorer (DrEdGE) is a web-based tool that guides genomicists through easily creating interactive online data visualizations, which colleagues can query according to their own conditions to discover genes, samples or patterns of interest. We demonstrate DrEdGE’s features with three example websites generated from publicly available datasets—human neuronal tissue, mouse embryonic tissue and Caenorhabditis elegans whole embryos. DrEdGE increases the utility of large genomics datasets by removing technical obstacles to independent exploration. Availability and implementation Freely available at http://dredge.bio.unc.edu. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Sophia C. Tintori ◽  
Patrick Golden ◽  
Bob Goldstein

AbstractAs the scientific community becomes increasingly interested in data sharing, there is a growing need for tools that facilitate the querying of public data. Mining of RNA-seq datasets, for example, has value to many biomedical researchers, yet is often effectively inaccessible to non-genomicist experts, even when the raw data are available. Here we present DrEdGE (dredge.bio.unc.edu), a free Web-based tool that facilitates data sharing between genomicists and their colleagues. The DrEdGE software guides genomicists through easily creating interactive online data visualizations, which colleagues can then explore and query according to their own conditions to discover genes, samples, or patterns of interest. We demonstrate DrEdGE’s features with three example websites we generated from publicly available datasets—human neuronal tissue, mouse embryonic tissue, and a C. elegans embryonic series. DrEdGE increases the utility of large genomics datasets by removing the technical obstacles that prevent interested parties from exploring the data independently.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Wen Ju ◽  
Alhaji Osman Smith ◽  
Tiantian Sun ◽  
Pingping Zhao ◽  
Yan Jiang ◽  
...  

Endothelial cells (ECs) could express some important cytokines and signal molecules which play a key role in normal hematopoiesis and repopulation. Busulfan-induced vascular endothelial injury is an important feature after hematopoietic stem cell transplantation (HSCT). But the molecular mechanism of how the injured ECs affect hematopoietic reconstruction is still unknown. It is possibly through modulation of the change of some gene expression. RT-qPCR is one of the most popular methods used to accurately determine gene expression levels, based on stable reference gene (RG) selection from housekeeping genes. So our aim is to select stable RGs for more accurate measures of mRNA levels during Busulfan-induced vascular endothelial injury. In this study, 14 RGs were selected to investigate their expression stability in ECs during 72 hours of EC injury treated with Busulfan. Our results revealed extreme variation in RG stability compared by five statistical algorithms. ywhaz and alas1 were recognized as the two idlest RGs on account of the final ranking, while the two most usually used RGs (gapdh and actb) were not the most stable RGs. Next, these data were verified by testing signalling pathway genes ctnnb1, robo4, and notch1 based on the above four genes ywha, alas1, gapdh, and actb. It shows that the normalization of mRNA expression data using unstable RGs greatly affects gene fold change, which means the reliability of the biological conclusions is questionable. Based on the best RGs used, we also found that robo4 is significantly overexpressed in Busulfan-impaired ECs. In conclusion, our data reaffirms the importance of RGs selection for the valid analysis of gene expression in Busulfan-impaired ECs. And it also provides very useful guidance and basis for more accurate differential expression gene screening and future expanding biomolecule study of different drugs such as cyclophosphamide and fludarabine-injured ECs.


Sign in / Sign up

Export Citation Format

Share Document