Density functional theory calculations of magnetic coupling in systems containing organic molecules and transition metal atoms: natural magnetic orbital analysis

1998 ◽  
Vol 11 (3) ◽  
pp. 181-188
Author(s):  
I. Lado-Touriño ◽  
F. Tsobnang
2021 ◽  
Vol 23 (1) ◽  
pp. 506-513
Author(s):  
Fei Liu ◽  
Yujie Liao ◽  
Yanbing Wu ◽  
Zongyu Huang ◽  
Huating Liu ◽  
...  

We performed density functional theory calculations to investigate the electronic and magnetic properties of h-BN/MoS2 heterostructures intercalated with 3d transition-metal (TM) atoms, including V, Cr, Mn, Fe, Co, and Ni atoms.


2017 ◽  
Vol 421 ◽  
pp. 252-259 ◽  
Author(s):  
Nicholas Dimakis ◽  
Fernando Antonio Flor ◽  
Andres Salgado ◽  
Kolade Adjibi ◽  
Sarah Vargas ◽  
...  

2010 ◽  
Vol 21 (12) ◽  
pp. 1469-1477 ◽  
Author(s):  
M. SAMAH ◽  
B. BOUGHIDEN

Structures, binding energies, magnetic and electronic properties endohedrally doped C 20 fullerenes by metallic atoms ( Fe , Co , Ti and V ) have been obtained by pseudopotential density functional theory. All M @ C 20, except Co @ C 20, are more stable than the undoped C 20 cage. The magnetic moment values are 1 and 2μB. These values and semiconductor behavior give to these compounds interesting feature in several technological applications. Titanium doped C 20 has a same magnetic moment than the isolated Ti atom. Hybridization process in the Co doped C 20 fullerene is most strong than in other doped cages. Electrical and magnetic dipoles calculated in the iron doped C 20 are very strong compared with other clusters.


Author(s):  
N. K. Das ◽  
K. Rigby ◽  
N. H. de Leeuw

Density functional theory calculations have been used to study the incorporation of helium in perfect and defect-containing palladium tritides, where we have calculated the energetics of incorporation and the migration behaviour. Helium atoms preferably occupy the octahedral interstitial and substitutional sites in the perfect and Pd vacancy-containing tritides, respectively. The energetics reveal that helium clusters can form in the lattice, which displace the Pd metal atoms. The defective lattice shows less expansion compared with the perfect lattice, which can accommodate the helium less easily. The path from octahedral–tetrahedral–octahedral sites is the lowest energy pathway for helium diffusion, and the energetics indicate that the helium generated from tritium decay can accumulate in or near the octahedral sites. Density of states analyses shows the hybridization between palladium d and tritium s orbitals and repulsion between palladium d and helium s orbitals, which can distort the lattice as a result of generating localized stress.


2008 ◽  
Vol 15 (05) ◽  
pp. 567-579 ◽  
Author(s):  
WEI FAN ◽  
XIN-GAO GONG

Based on the Density Functional Theory (DFT) with noncollinear-magnetism formulations, we have calculated the magnetism of single 3d transition-metal atoms and the magnetic anisotropies of supported Ni chains on the Au(110)-(1 × 2) surface. Our results for single absorbed 3d transition-metal atoms show that the surface relaxations enhance the orbital moments of left-end elements (Ti, V) and quenches the orbital moments of right-end elements (Fe, Co, Ni) on the Au(110)-(1 × 2) surface. The magnetic anisotropies of Ni atomic chains on the surface are closely related to orbital quenching. The easy magnetized axes change from the direction parallel to the chains to the direction perpendicular to the Ni chains when they absorb on the surface.


Sign in / Sign up

Export Citation Format

Share Document