Operator guidance system for industrial plant supervision

1997 ◽  
Vol 12 (4) ◽  
pp. 441-454 ◽  
Author(s):  
Hernan Villanueva ◽  
Harmeet Lamba
2021 ◽  
Author(s):  
Thomas Bale ◽  
andrew calway ◽  
Kirsten Cater ◽  
Chris Bevan ◽  
Robert Skilton ◽  
...  

2013 ◽  
pp. 645-650
Author(s):  
Fabio R.M. Batista ◽  
Antonio J.A. Meirelles

Experimental validation of the process simulation a typical industrial bioethanol unit was conducted, comparing the obtained results with the information collected in an industrial plant. A standard solution containing water, ethanol and 17 congeners was chosen to represent the fermented must, whose composition was selected according to analyses of samples of industrial wines. A careful study of the vapour-liquid equilibrium of the wine components was performed. An attempt to optimise the industrial plant was conducted considering two optimising approaches: the central composite design (CCD) and the Sequential Quadratic Programming (SQP). The process was investigated in terms of bioethanol alcoholic graduation, ethanol recovery, energy consumption and ethanol loss. The results showed that the simulation approach was capable of correctly reproducing a real plant of bioethanol distillation and that the optimal conditions are slightly different from those used at the industrial plant investigated. Substantial fluctuations in wine composition were easily controlled for the two loop controls preventing an off-specification product. The optimised conditions indicate a distillation process able to produce bioethanol according to the legislation requirements and with appropriate steam consumption and loss of ethanol. However, for the production of alcohols with superior qualities, substantial changes in the production system may be required.


2020 ◽  
Vol 24 (03) ◽  
pp. 515-520
Author(s):  
Vattumilli Komal Venugopal ◽  
Alampally Naveen ◽  
Rajkumar R ◽  
Govinda K ◽  
Jolly Masih

2021 ◽  
Vol 9 (3) ◽  
pp. 277
Author(s):  
Isaac Segovia Ramírez ◽  
Pedro José Bernalte Sánchez ◽  
Mayorkinos Papaelias ◽  
Fausto Pedro García Márquez

Submarine inspections and surveys require underwater vehicles to operate in deep waters efficiently, safely and reliably. Autonomous Underwater Vehicles employing advanced navigation and control systems present several advantages. Robust control algorithms and novel improvements in positioning and navigation are needed to optimize underwater operations. This paper proposes a new general formulation of this problem together with a basic approach for the management of deep underwater operations. This approach considers the field of view and the operational requirements as a fundamental input in the development of the trajectory in the autonomous guidance system. The constraints and involved variables are also defined, providing more accurate modelling compared with traditional formulations of the positioning system. Different case studies are presented based on commercial underwater cameras/sonars, analysing the influence of the main variables in the measurement process to obtain optimal resolution results. The application of this approach in autonomous underwater operations ensures suitable data acquisition processes according to the payload installed onboard.


2010 ◽  
Author(s):  
Chris Wedlake ◽  
John Moore ◽  
Maxim Rachinsky ◽  
Daniel Bainbridge ◽  
Andrew D. Wiles ◽  
...  

Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 26
Author(s):  
Yiran Xue ◽  
Rui Wu ◽  
Jiafeng Liu ◽  
Xianglong Tang

Existing crowd evacuation guidance systems require the manual design of models and input parameters, incurring a significant workload and a potential for errors. This paper proposed an end-to-end intelligent evacuation guidance method based on deep reinforcement learning, and designed an interactive simulation environment based on the social force model. The agent could automatically learn a scene model and path planning strategy with only scene images as input, and directly output dynamic signage information. Aiming to solve the “dimension disaster” phenomenon of the deep Q network (DQN) algorithm in crowd evacuation, this paper proposed a combined action-space DQN (CA-DQN) algorithm that grouped Q network output layer nodes according to action dimensions, which significantly reduced the network complexity and improved system practicality in complex scenes. In this paper, the evacuation guidance system is defined as a reinforcement learning agent and implemented by the CA-DQN method, which provides a novel approach for the evacuation guidance problem. The experiments demonstrate that the proposed method is superior to the static guidance method, and on par with the manually designed model method.


Sign in / Sign up

Export Citation Format

Share Document