P36 Progesterone reduces and shifts the voltage dependence of the skeletal muscle chloride conductance

2012 ◽  
Vol 22 ◽  
pp. S16
Author(s):  
J. Burge ◽  
S. Schorge ◽  
M.G. Hanna
1993 ◽  
Vol 265 (1) ◽  
pp. C171-C177 ◽  
Author(s):  
R. L. Ruff ◽  
D. Whittlesey

The voltage dependence and amplitude of Na+ currents (INa) were studied with the loose-patch voltage-clamp technique on 19 fast-twitch human intercostal skeletal muscle fibers at the endplate border and > 200 microns from the endplate (extrajunctional). The fibers were histochemically classified as fast-twitch oxidative-glycolytic (type IIa, n = 9) or fast-twitch glycolytic (type IIb, n = 10). The voltage dependence of activation and fast and slow inactivation of INa were similar for membrane patches recorded on the endplate border and on extrajunctional membrane for both fiber types. INa was about fivefold larger on the endplate border compared with extrajunctional membrane for both fiber types. Type IIb fibers had larger values of INa and manifest fast inactivation of INa at more negative potentials than type IIa fibers. The difference between type IIa and IIb fibers may enable IIb fibers to operate at higher firing frequencies for brief periods.


2005 ◽  
Vol 126 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Gregory N. Filatov ◽  
Martin J. Pinter ◽  
Mark M. Rich

Normal muscle has a resting potential of −85 mV, but in a number of situations there is depolarization of the resting potential that alters excitability. To better understand the effect of resting potential on muscle excitability we attempted to accurately simulate excitability at both normal and depolarized resting potentials. To accurately simulate excitability we found that it was necessary to include a resting potential–dependent shift in the voltage dependence of sodium channel activation and fast inactivation. We recorded sodium currents from muscle fibers in vivo and found that prolonged changes in holding potential cause shifts in the voltage dependence of both activation and fast inactivation of sodium currents. We also found that altering the amplitude of the prepulse or test pulse produced differences in the voltage dependence of activation and inactivation respectively. Since only the Nav1.4 sodium channel isoform is present in significant quantity in adult skeletal muscle, this suggests that either there are multiple states of Nav1.4 that differ in their voltage dependence of gating or there is a distribution in the voltage dependence of gating of Nav1.4. Taken together, our data suggest that changes in resting potential toward more positive potentials favor states of Nav1.4 with depolarized voltage dependence of gating and thus shift voltage dependence of the sodium current. We propose that resting potential–induced shifts in the voltage dependence of sodium channel gating are essential to properly regulate muscle excitability in vivo.


1991 ◽  
Vol 98 (2) ◽  
pp. 365-378 ◽  
Author(s):  
G Szücs ◽  
Z Papp ◽  
L Csernoch ◽  
L Kovács

Intramembrane charge movement was measured on skeletal muscle fibers of the frog in a single Vaseline-gap voltage clamp. Charge movements determined both under polarized conditions (holding potential, VH = -100 mV; Qmax = 30.4 +/- 4.7 nC/micro(F), V = -44.4 mV, k = 14.1 mV; charge 1) and in depolarized states (VH = 0 mV; Qmax = 50.0 +/- 6.7 nC/micro(F), V = -109.1 mV, k = 26.6 mV; charge 2) had properties as reported earlier. Linear capacitance (LC) of the polarized fibers was increased by 8.8 +/- 4.0% compared with that of the depolarized fibers. Using control pulses measured under depolarized conditions to calculate charge 1, a minor change in the voltage dependence (to V = -44.6 mV and k = 14.5 mV) and a small increase in the maximal charge (to Qmax = 31.4 +/- 5.5 nC/micro(F] were observed. While in most cases charge 1 transients seemed to decay with a single exponential time course, charge 2 currents showed a characteristic biexponential behavior at membrane potentials between -90 and -180 mV. The voltage dependence of the rate constant of the slower component was fitted with a simple constant field diffusion model (alpha m = 28.7 s-1, V = -124.0 mV, and k = 15.6 mV). The midpoint voltage (V) was similar to that obtained from the Q-V fit of charge 2, while the steepness factor (k) resembled that of charge 1. This slow component could also be isolated using a stepped OFF protocol; that is, by hyperpolarizing the membrane to -190 mV for 200 ms and then coming back to 0 mV in two steps. The faster component was identified as an ionic current insensitive to 20 mM Co2+ but blocked by large hyperpolarizing pulses. These findings are consistent with the model implying that charge 1 and the slower component of charge 2 interconvert when the holding potential is changed. They also explain the difference previously found when comparing the steepness factors of the voltage dependence of charge 1 and charge 2.


2009 ◽  
Vol 156 (8) ◽  
pp. 1206-1215 ◽  
Author(s):  
S Pierno ◽  
GM Camerino ◽  
V Cippone ◽  
J-F Rolland ◽  
J-F Desaphy ◽  
...  

2021 ◽  
Author(s):  
Yousra El El Ghaleb ◽  
Nadine J. Ortner ◽  
Wilfried Posch ◽  
Monica L. Fernandez-Quintero ◽  
Wietske E. Tuinte ◽  
...  

The skeletal muscle voltage-gated calcium channel (CaV1.1) primarily functions as voltage sensor for excitation-contraction coupling. Conversely, its ion-conducting function is modulated by multiple mechanisms within the pore-forming α1S subunit and the auxiliary α2δ-1 and γ1 subunits. Particularly, developmentally regulated alternative splicing of exon 29, which inserts 19 amino acids in the extracellular IVS3-S4 loop of CaV1.1a, greatly reduces the current density and shifts the voltage-dependence of activation to positive potentials outside the physiological range. We generated a new HEK293-cell line stably expressing α2δ-1, β3, and STAC3. When the adult (CaV1.1a) and the embryonic (CaV1.1e) splice variants were expressed in these cells, the difference in the voltage-dependence of activation observed in muscle cells was reproduced, but not the reduced current density of CaV1.1a. Only when we further co-expressed the γ1 subunit, the current density of CaV1.1a, but not of CaV1.1e, was reduced by >50 %. In addition, γ1 caused a shift of the voltage-dependence of inactivation to negative voltages in both variants. Thus, the current-reducing effect of γ1, but not its effect on inactivation, is specifically dependent on the inclusion of exon 29 in CaV1.1a. Molecular structure modeling revealed several direct ionic interactions between oppositely charged residues in the IVS3-S4 loop and the γ1 subunit. However, substitution of these residues by alanine, individually or in combination, did not abolish the γ1-dependent reduction of current density, suggesting that structural rearrangements of CaV1.1a induced by inclusion of exon 29 allosterically empower the γ1 subunit to exert its inhibitory action on CaV1.1 calcium currents.


Sign in / Sign up

Export Citation Format

Share Document