Predictions of the Gauss-Hermite beam model and finite element method for ultrasonic propagation through anisotropic stainless steel

1996 ◽  
Vol 29 (4) ◽  
pp. 246
2019 ◽  
Vol 53 (3) ◽  
pp. 189-196
Author(s):  
Bhagyashree S. Jadhav ◽  
Ravindranath V. Krishnan ◽  
Vivek J. Patni ◽  
Girish R. Karandikar ◽  
Anita G. Karandikar ◽  
...  

Objective: To evaluate and compare the force and load deflection rate generated by differing unit displacement through 1 to 4 mm of springs that vary in design (Double Delta Closing Loop, Double Vertical T Crossed Closing Loop, Double Vertical Helical Closing Loop and Ricketts Maxillary Retractor), constituting wire materials (stainless steel and beta titanium), and wire dimensions (0.017" × 0.025" and 0.019" × 0.025"). Materials and methods: Computer-assisted design (CAD) model of the said loop springs was created and converted to the finite element method (FEM). The boundary conditions assigned were restraining anterior segment of the loops in all the 3 axes and displacement of the posterior segment progressively only along the x-axis in increments of 1, 2, 3, and 4 mm. Force and load deflection rate were calculated for each incremental displacement. Results: For all loop designs, force and load deflection rate increased with incremental displacement. Loop springs of beta titanium and 0.017" × 0.025" dimension showed lesser force and load deflection rate than those of stainless steel and 0.019" × 0.025", respectively. Ricketts Maxillary Retractor showed the least force and load deflection rate. Comparable force and load deflection values were found for 0.017" × 0.025" Double Vertical T Crossed Loop and 0.019" × 0.025" Double Vertical Helical Closing Loop. Conclusions: Variations in wire dimensions, materials, and designs have a profound effect on force and load deflection rate of the different loop springs studied.


2020 ◽  
Vol 21 ◽  
pp. 690-693
Author(s):  
S. Arun Kumar ◽  
V. Velmurugan ◽  
V. Paramasivam ◽  
S. Thanikaikarasan

2013 ◽  
Vol 758 ◽  
pp. 1-10
Author(s):  
Fabiano Rezende ◽  
Luís Felipe Guimarães de Souza ◽  
Pedro Manuel Calas Lopes Pacheco

Welding is a complex process where localized and intensive heat is imposed to a piece promoting mechanical and metallurgical changes. Phenomenological aspects of welding process involve couplings among different physical processes and its description is unusually complex. Basically, three couplings are essential: thermal, phase transformation and mechanical phenomena. Welding processes can generate residual stress due to the thermal gradient imposed to the workpiece in association to geometric restrictions. The presence of tensile residual stresses can be especially dangerous to mechanical components submitted to fatigue loadings. The present work regards on study the residual stress in welded superduplex stainless steel pipes using experimental and a numerical analysis. A parametric nonlinear elastoplastic model based on finite element method is used for the evaluation of residual stress in superduplex steel welding. The developed model takes into account the coupling between mechanical and thermal fields and the temperature dependency of the thermomechanical properties. Thermocouples are used to measure the temperature evolution during welding stages. Instrumented hole drilling technique is used for the evaluation of the residual stress after welding process. Experimental data is used to calibrate the numerical model. The methodology is applied to evaluate the behavior of two-pass girth welding (TIG for root pass and SMAW for finishing) in 4 inch diameter seamless tubes of superduplex stainless steel UNS32750. The result shows a good agreement between numerical experimental results. The proposed methodology can be used in complex geometries as a powerful tool to study and adjust welding parameters to minimize the residual stresses on welded mechanical components.


2021 ◽  
pp. 43-52
Author(s):  
Anatoly Mironov ◽  
Dmitry Y. Titko

The features of global strength modelling of floating dry docks using finite element method are considered. Comparative analysis of two- and three-dimensional models was performed considering the interaction of the floating dry dock and the ship. To solve the problem of reducing the complexity of creating and the size of the finite element model, it is proposed to use the elements of a volumetric orthotropic body to model the main transverse beams of the pontoon. Hydrostatic elastic base of floating dry dock is represented as spring elements. The model of the dock support device includes spring and gap elements. The vessel is considered in the equivalent beam model. Results were obtained on such effects as redistribution of buoyant force due to deformation of the dock, incomplete inclusion of the towers in the general longitudinal bending of the dock, the effect of ship stiffness not only on the longitudinal, but also on the transverse bending of the dock.


Sign in / Sign up

Export Citation Format

Share Document