Ribbon-like nanostructures transformed from carbon nanotubes at high temperature and pressure

1998 ◽  
Vol 10 (7) ◽  
pp. 1145-1152 ◽  
Author(s):  
M. Zhang ◽  
D.H. Wu ◽  
C.L. Xu ◽  
Y.F. Xu ◽  
W.K. Wang
Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 323-331
Author(s):  
Miłosz Kędzierski ◽  
◽  
Marcin Rzepka ◽  

The article presents the results of the influence of carbon nanotubes on the mechanical parameters of cement stones under high temperature and pressure conditions (150°C, 90 MPa). The tests used multi-walled carbon nanotubes (MWCNTs) with an external diameter of 10–20 nm and a length of 10–30 μm. Cement slurries contained 0.1% of CNTs bwoc (by the weight of cement). Laboratory tests of cement slurries were carried out at the Oil and Gas Institute – National Research Institute. The tests were carried out under conditions of increased pressure and temperature at 150°C, 90 MPa. Cement slurries were prepared on the basis of class G drilling cement. Developing recipes were guided by the requirements to be met by cement slurry for the cementing of casing in the conditions of high temperature and reservoir pressures. The densities of tested slurries ranged from 1900 kg/m3 to 2250 kg/m3 (slurries with the addition of hematite). The cement slurries were tested for density, fluidity, rheological parameters, filtration and thickening time. Compressive strength tests and measuring adhesion were carried out after 2, 7, 14 and 28 days. Cement slurry recipes with very good technological parameters were developed and after curing (after 28 days of hydration) had very high values of compressive strength, reaching up to 45 MPa. Cements were characterized by high values of adhesion to pipes reaching up 7 MPa after 28 days. The research showed significant information about possible applications of carbon nanotubes to modify the cement slurry under conditions of high temperature and pressure. The conducted tests confirmed that the addition of even small amounts of CNTs improves the mechanical parameters of the cement stone compared to the base sample without such addition, and also reduces the thickening time of cement slurries and reduces filtration. It is investigated that CNTs addition increases the viscosity and yield point of cement slurry. As a result, slurries with the addition of MWCNTs will more effectively displace the mud from the borehole and significantly affect the quality of cementation.


2018 ◽  
Vol 213 ◽  
pp. 207-214 ◽  
Author(s):  
Michael Hack ◽  
Wolfgang Korte ◽  
Stefan Sträßer ◽  
Matthias Teschner

1999 ◽  
Vol 122 (1) ◽  
pp. 22-26 ◽  
Author(s):  
M. Law ◽  
W. Payten ◽  
K. Snowden

Modeling of welded joints under creep conditions with finite element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model. [S0094-9930(00)00601-6]


2020 ◽  
Author(s):  
Dapeng Wen ◽  
Yongfeng Wang ◽  
Junfeng Zhang ◽  
Pengxiao Li ◽  
Zhen-Min Jin

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Lili Liu ◽  
Xiaozhi Wu ◽  
Weiguo Li ◽  
Rui Wang ◽  
Qing Liu

AbstractThe high temperature and pressure effects on the elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds with B2 structure have been performed from first principle calculations. For the temperature range 0-1000 K, the second order elastic constants for all the AgRE intermetallic compounds follow a normal behavior: they decrease with increasing temperature. The pressure dependence of the second order elastic constants has been investigated on the basis of the third order elastic constants. Temperature and pressure dependent elastic anisotropic parameters A have been calculated based on the temperature and pressure dependent elastic constants.


ChemPhysChem ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Caroline Schuabb ◽  
Melanie Berghaus ◽  
Christopher Rosin ◽  
Roland Winter

Sign in / Sign up

Export Citation Format

Share Document