Review on water leakage control in distribution networks and the associated environmental benefits

2014 ◽  
Vol 26 (5) ◽  
pp. 955-961 ◽  
Author(s):  
Qiang Xu ◽  
Ruiping Liu ◽  
Qiuwen Chen ◽  
Ruonan Li
2018 ◽  
Vol 15 (8) ◽  
pp. 812-826 ◽  
Author(s):  
Norzaura Abd Rahman ◽  
Nur Shazwani Muhammad ◽  
Wan Hanna Melini Wan Mohtar

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1736 ◽  
Author(s):  
Parima Mirshafiei ◽  
Abolghasem Sadeghi-Niaraki ◽  
Maryam Shakeri ◽  
Soo-Mi Choi

The purpose of this paper is to model one of the urban network problems, the issue of water leakage. In order to manage water leakage, the specific area should be partially isolated from the rest of the network. As Geospatial Information System (GIS) is a powerful technology in spatial modeling, analysis and visualization of the water network management, a web GIS system for finding optimal valves to close in the event of an incident was developed. The system consists of a new GIS based algorithm for identifying the ideal valves to isolate the desired pipeline. The algorithm is able to identify optimum valves in a water distribution network in the shortest time by using the traceability in GIS web services. The system uses the functions of storing and managing the spatial data by expert users based on web 2.0 technology. The system was implemented and evaluated for Tehran’s district 5 water distribution network using Silverlight, C# and ArcGIS SDK (Software Development Kit). The evaluations demonstrated the accuracy of the algorithm and the operational viability of the system developed.


Author(s):  
Marino Godoy Arcia ◽  
Zaid Garcia Sanchez ◽  
Hernan Hernandez Herrera ◽  
José Antonio Gonzalez Cueto Cruz ◽  
Jorge Iván Silva Ortega ◽  
...  

The renewable energy sources (RESs) projects are solutions with environmental benefits that are changing the traditional power system operation and concept. Transient stability analysis has opened new research trends to guarantee a secure operation high penetration. Problems such as frequency fluctuations, decoupling between generator angular speed, network frequency fluctuation and kinetic energy storing absence are the main non-conventional RESs penetration in power systems. This paper analyzes short-circuit influence on frequency response, focusing on weak distribution networks and isolated, to demonstrate relevance in frequency stability. A study case considered a generation outage and a load input to analyze frequency response. The paper compares frequency response during a generation outage with a short-circuit occurrence. In addition, modular value and angle generator terminal voltage affectation by electric arc and network ratio R⁄X, failure type influence in power delivered behavior, considering fault location, arc resistance and load. The arc resistance is defined as an added resistance that appears during failure and influences voltage modulus and angle value results showing that intermittent non-conventional RES participation can lead to frequency fluctuations. Results showed that arc resistance, type of failure, location and loadability determine the influence of frequency response factors in weak power systems.


2020 ◽  
Vol 60 (2) ◽  
pp. 501
Author(s):  
Jarrod Pittson ◽  
Allie Convery

Woodside is the first, and, to date, only, Australian listed company to be a signatory to the Methane Guiding Principles, an industry, non-Government organisation and educational institution collaboration aimed at reducing methane emissions across the natural gas value chain. Woodside’s methane emissions are ~0.04% of our total hydrocarbon production, or 400 kt CO2-eq per annum (Woodside Energy 2019). This is a relatively small methane emission footprint in comparison with other industrial and oil and gas operators; however, to ensure the greenhouse gas and environmental benefits of LNG over coal and other greenhouse intensive fossil fuels remain legitimate and substantial, we recognise the important role of minimising methane losses through the natural gas value chain. The global-warming potential of methane is 86 times more potent over a 20-year time frame than that of carbon dioxide (IPCC 2014). By tackling methane emissions, significant inroads can be made in reducing the impacts of greenhouse gases in the atmosphere. Woodside became a signatory to the Methane Guiding Principles in April 2018 and has commenced a program of work to deliver on the five principles, which are to (1) continually reduce methane emissions, (2) advance strong performance across gas value chains, (3) improve accuracy of methane emissions data, (4) advocate sound policy and regulations on methane emissions and (5) increase transparency. This paper will focus on the journey we are on, namely, understanding our methane emission footprint within our operational boundaries and setting in place an action plan to reduce these emissions. But it is also a lot broader as we start to look beyond our gates to the transport and distribution networks, through to the end user turning on their gas stove at home. It is about cradle to grave custody of our product for it to be a viable long-term solution in a lower-carbon economy.


Sign in / Sign up

Export Citation Format

Share Document