Geostatistical modelling and mapping of nematode-based soil ecological quality indices in a polluted nature reserve

Pedosphere ◽  
2021 ◽  
Vol 31 (5) ◽  
pp. 670-682
Author(s):  
Israel O. IKOYI ◽  
Gerard B.M. HEUVELINK ◽  
Ron G.M. DE GOEDE
Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2551 ◽  
Author(s):  
Daniel Bruno ◽  
Víctor Zapata ◽  
Simone Guareschi ◽  
Félix Picazo ◽  
Ettore Dettori ◽  
...  

Invasive species are among the top five causes of biodiversity loss worldwide. Arundo donax has progressively colonized the riparian zones of Mediterranean rivers with detrimental effects on terrestrial and aquatic biodiversity, being catalogued as one of the 100 worst invasive species. In order to control this invasive species and restore native riparian vegetation, different methods have been traditionally used, depending on the environmental, economic and social context. Here, the effect of repeated above-ground removal of A. donax on aquatic and terrestrial communities was assessed by testing two different frequencies of mowing (monthly-intensive and quarterly-extensive), combined with the plantation of native species. Specifically, it was evaluated if riparian vegetation, birds and aquatic macroinvertebrates showed significant responses throughout time and between restoration treatments based on 4-year annual biomonitoring data (2015–2018). Changes in taxonomic diversity and ecological quality indices for the different biological communities were tested using mixed-effect models (LMEs). Similarly, comparisons between restored and reference sites were also performed. LMEs were also applied to assess how riparian variables were related to bird and aquatic macroinvertebrate indices. NMDS and MGLM-Mvabund analyses were performed to detect significant post-treatment differences in taxa composition compared to the initial state and reference sites. During this short-term assessment, increases in riparian and aquatic macroinvertebrate richness and quality indices were found, as well as significant decreases in A. donax height, density and cover, without significant differences between restoration treatments. However, differential effects between extensive (positive-neutral effect) and intensive treatments (neutral-negative effect) were detected for bird richness, density and abundance. After three years of restoration actions, restored sites are still far from reference values in terms of taxa composition, species richness and ecological quality, especially for riparian vegetation and birds. Given the high cost and the great efforts required for restoration, extensive repeated mowing, together with native species plantation, are only recommended on river reaches not fully invaded by A. donax and with a high ecological interest.


2012 ◽  
Vol 12 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Céline Labrune ◽  
Alicia Romero-Ramirez ◽  
Jean Michel Amouroux ◽  
Jean Claude Duchêne ◽  
Martin Desmalades ◽  
...  

Inland Waters ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Xavier Sòria-Perpinyà ◽  
Vicente Sancho-Tello ◽  
María José Rodriguez ◽  
Concha Durán ◽  
Juan Miguel Soria ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Nadieh de Jonge ◽  
Martin Hesselsøe ◽  
Jeppe Nielsen

The Water Framework Directive dictates that all European surface waters must have an ecological quality of good or better. The need for regular and comparable ecological quality assessments drives the development of DNA-based approaches for biomonitoring in freshwater systems. Water quality assessments are traditionally based on biological quality elements (BQE) such as fish, plants and other fauna. Previous studies have shown the potential of metabarcoding as a potential supplement to traditional morphology-based approaches to determine water quality indices. Metabarcoding of the macroinvertebrate community on unsorted bulk samples has the ability to profile freshwater streams into at least 7 water quality categories Kuntke et al. (2020). A follow-up study using the same locations shows that a broad range barcode targeting the ribosomal 16S/18S RNA genes simultaneously demonstrated that ecological quality is reflected in all environmental DNA; the eukaryotic communities, and perhaps even more so, in the microbiome of the sampled streams (unpublished). The relationship between water quality and microbial communities is well-known, but not well-described. Healthy compositions of microbiota are vital for the functioning of many organisms, and this principle extends to the ecosystem level as well. The microbiome of freshwater streams therefore represents a great untapped potential in the development of DNA-based monitoring methods. The aim of this work was to explore links between water quality, environmental DNA collected from bulk and sediment samples, as well as individual macroinvertebrates with relevance for freshwater streams. Previous work on invertebrate communities Kuntke et al. (2020), and bulk sample analysis (total 53 streams) (unpublished) was combined with metabarcoding data of microbial communities from an additional 31 Danish stream sediments, as well as 140 macroinvertebrate indicator species. Metabarcoding of freshwater stream bulk and sediment samples has revealed strong parallels to conventional fauna observations in relation to estimations of water quality. Both the invertebrate and microbial community diversity followed the general trend of increasing to a plateau with higher water quality (data not shown). Macroinvertebrate composition (Fig. 1a) and sediment microbiome composition (Fig. 1b) were observed to be present on a gradient in relation to water quality, with individual taxa being either more, equally or less abundant with changing water quality, and only few solely related to a single category. Microbial populations associated to poor oxygenation (Methylomonadaceae, Rhodocyclaceae), as well as faecal contaminations (Anaerolineaceae, Lentimicrobiaceae) were abundantly observed in sediments of lower ecological quality. This equates to presence of macroinvertebrates able to survive in polluted environments with poor oxygen conditions. Part of the sediment microbiome was also found to be associated to the analysed macroinvertebrate species (Fig. 1c). However, the invertebrates also had their own unique and diverse microbiota, including known endosymbionts (Wolbachia, Rickettsia) and other insect associated microbiota (Acinetobacter, Chryseobacterium). Current sequencing platforms and high quality databases combined with advanced statistical analyses have made it possible to begin the development of modified assessment protocols based on DNA analyses, and could potentially lead to entirely new ecological quality indices for the prediction of water quality. Microbes can be very sensitive to environmental changes, and harbour potential indicator organisms for e.g. pollution, and by extension, water quality in a given stream. Microbiome data is abundant, and easy to obtain from all types of environmental samples, including those collected for metabarcoding of existing BQE such as macroinvertebrates. Exploring the use of sediment and fauna microbiomes has the potential to yield a wealth of new information relating to how ecosystems reflect water quality, and may provide additional indicators for use in DNA-based water quality assessment methods.


2019 ◽  
pp. 36-39
Author(s):  
V.J. Chernykh ◽  
◽  
V.V. Martirosyan ◽  
V.D. Malkina ◽  
T.I. Kryachko ◽  
...  
Keyword(s):  

Author(s):  
Yelena I. Shtyrkova ◽  
Yelena I. Polyakova

The results of fossil diatoms investigation from the deltaic sediments are presented. Samples were obtained from the core DM-1 and two Holocene outcrops from the Damchik region of the Astrakhan Nature Reserve. In the core samples eight periods of sedimentation based on diatom analysis were identified: the sediments formed in shallow freshwater basins and deltaic channels. The samples from the outcrops were investigated in much greater detail.


Sign in / Sign up

Export Citation Format

Share Document