Numerical simulation and experiment validation of thixoforming angle frame of AZ61 magnesium alloy

2010 ◽  
Vol 20 ◽  
pp. s888-s892 ◽  
Author(s):  
Ju-fu JIANG ◽  
Ying WANG ◽  
Jian-jun QU ◽  
Zhi-ming DU ◽  
Shou-jing LUO
2008 ◽  
Vol 575-578 ◽  
pp. 660-665 ◽  
Author(s):  
Hong Ye ◽  
Yi Luo ◽  
Zhong Lin Yan ◽  
Bin Shen

Magnesium alloys are being increasingly used in automotive and aerospace structures. In this study, welding of AZ61 magnesium alloy with 10 mm thickness was carried out using vacuum electron beam welding (EBW). By using the finite element model and the 3D moving double ellipsoid heat source model, numerical simulation method was employed to study the influence of the electron beam current on the temperature field of welding process and weld penetration. The microstructure and microhardness of weld joint obtained by the optimized vacuum EBW process had been investigated in detail. The results show that the numerical simulation result basically matches the experimental result. A favorable joint had been obtained by EBW for AZ61 magnesium alloy, in which heat affected zone was not evident, the fusion zone (FZ) consisted of fine-equiaxed grain. The weld hardness was greater than that of the base metal.


2013 ◽  
Vol 773-774 ◽  
pp. 130-136 ◽  
Author(s):  
Jin Tao Li ◽  
Guang Ming Xu ◽  
Hai Liang Yu ◽  
Li Hong Su ◽  
Guan Yu Deng ◽  
...  

Twin-roll strip casting is a concerned technology for economically producing magnesium alloys sheets. In this paper, numerical simulation of the twin-roll strip casting of an AZ61 magnesium alloy was carried out and the optimal process parameters were obtained. Then, under the conditions obtained through simulation, AZ61 strips of good surface quality were successfully manufactured. The microstructure of the alloy by twin-rolled strip casting is obvious refined compared with that by conventional casting.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 813
Author(s):  
Bo Jiang ◽  
Dongdong Zhang ◽  
Hong Xu ◽  
Yongbing Liu ◽  
Zhanyi Cao ◽  
...  

In this work, we reported the high ductility of an extruded AZ61 magnesium alloy tube achieved by electropulsing current-assisted tension. The elongation of the alloy reached up to about 45%, which is largely superior to the majority of AZ61 wrought Mg alloys. We found that the hardening capacity of the alloy seemed to slightly increase as the electropulsing frequency increased. Furthermore, electropulsing can arouse the serrated flow phenomenon. Here we proposed an equation describing the correlation between the average amplitude and frequency: Aa = C − 6 × 10−3f, where Aa is the average amplitude, f is the frequency, and C is the constant. In addition, introducing electropulsing current pronouncedly reduced the tendency of twinning, but the twinning fraction seemed to fail depending on the electropulsing frequency. Based on microstructure analysis, we concluded that the outstanding ductility of the studied alloy was mainly due to the combined role of the thermal effects from Joule heating, the athermal effects from electron wind, and the magnetic effects from the electropulsing current. The serrated flow phenomenon occurred along stress–strain curves after electropulsing treatment, and the underlying reasons also were uncovered.


Sign in / Sign up

Export Citation Format

Share Document