electron beam current
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jiang Yueling ◽  
Dong Quanlin

Abstract In electron beam technology, the critical focus of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in a simulation, obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012099
Author(s):  
R Sazonov ◽  
G Kholodnaya ◽  
D Ponomarev ◽  
I Egorov ◽  
A Poloskov ◽  
...  

Abstract This work investigates the processes of dissipation of the charge and energy of a pulsed electron beam in gas compositions (nitrogen, carbon dioxide and oxygen) in the presence of ammonium sulphate and nitrate. A pulsed electron beam generated by the TEA-500 accelerator (Tomsk, Russia) with an electron energy of up to 410 keV, a beam current of up to 5 kA (I0 ), and a half-amplitude voltage pulse duration of 60 ns was injected into a 46 cm long drift chamber filled with a gas mixture. The pulsed electron beam current (IFC ) passing through the drift chamber was registered using a sectioned calorimeter with beam charge monitor function, and the efficiency of the current passage of the beam was determined as the ratio qFC/q0 , where q0 is the beam charge measured at the place of its injection into the chamber drift. The pressure in the drift chamber varied (375, 560 and 760 Torr, humidity value 15% ± 5% and 50% ± 5%). The geometric dimensions of the plasma-chemical reactor for initiating plasma-chemical reactions of flue gas cleaning were determined.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012031
Author(s):  
D A Sorokin ◽  
M I Lomaev ◽  
A V Dyatlov ◽  
V F Tarasenko

Abstract The study of the time behavior of a current pulse of an electron beam generated during a high-voltage nanosecond discharge in gas-filled and vacuum diodes has been carried out. As follows from the experimental results, in both cases, the distribution of the beam current density in the plane of a grounded anode is non-uniform. The highest beam current density is recorded in the axial part of the anode. It was established that in the case of a gas-filled diode, ~ 2 ns after the onset of the beam current pulse, its shape in the axial anode zone changes relative to that in the peripheral one. It is assumed that the most probable reason for this is the effect of compensation of the charge of the beam electrons by the positive charge of ions arising in the ionization process in the paraxial zone.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012123
Author(s):  
A V Kazakov ◽  
A V Medovnik ◽  
E M Oks ◽  
N A Panchenko

Abstract The research of influence of accelerating gap configuration on parameters of a forevacuum plasma-cathode source of a pulsed low-energy (up to 10 keV) large-radius electron beam is presented. An increase in cell sizes of a mesh emission electrode increases electron emission efficiency, but leads to a decrease in electric strength of an accelerating gap. Larger cell sizes of a mesh extractor provide higher electron beam current. An increase in the length of the accelerating gap first leads to an increase in the electron emission efficiency, but when optimal value is reached, a further increase in the length leads to a decrease in the emission efficiency. This optimal length of the accelerating gap is about 25 mm. However, the electron emission efficiency changes relatively small (within 15%). The dependencies of maximum emission current and maximum operating gas pressure on the length of acceleration gap is similar to the dependence for the emission efficiency, but the gap length much stronger influences on these maximum values. Moreover, the optimal length, at which maximum emission current or maximum pressure is provided, is depended on gas pressure (for current) or emission current (for pressure), accelerating voltage and pulse duration.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042092
Author(s):  
S O Kurashkin ◽  
D V Rogova ◽  
Ya A Tynchenko

Abstract The article is devoted to modeling the process of electron beam welding in the manufacture of electric motors with a bimetallic ring used in biofuel preparation reactors. The main problem at the current stage of production is the choice of the technological mode of welding and the repeatability of the result. In this work, the authors simulate the welding of electric motors with a bimetallic ring under various technological modes in the ANSYS simulation environment in the process of electron beam welding. The result of the work will be a graphical representation of the temperature distribution on the surface of the product at various values of the technological parameters (electron beam current, welding speed and welding process time). Today, the choice of modes for a new technological process is carried out experimentally, which entails high material costs. The approach proposed by the authors allows, with minimal time and material costs, to select a technological mode for welding products from new alloys.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2338
Author(s):  
Michał Krysztof

In this paper, the results of modeling and simulation of a microcolumn are presented. The microcolumn is part of a developed miniature MEMS electron microscope equipped with a miniature MEMS high-vacuum micropump. Such an arrangement makes this device the first stand-alone miniature electron-optical device to operate without an external high-vacuum chamber. Before such a device can be fabricated, research on particular elements must be carried out to determine the working principles of the device. The results of the calculations described in this article help us to understand the work of a microcolumn with square holes in the electrodes. The formation of an electron beam spot at the anode is discussed. Further calculations and results show the dependence of the Einzel lens size on the electron beam spot diameter, electron beam current, and microcolumn focusing voltage. The results are used to define the optimal design of the developed MEMS electron microscope.


LITOSFERA ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 323-348
Author(s):  
Z. A. Yudalevich ◽  
V. A. Vapnik ◽  
M. D. Vishnyakova ◽  
N. S. Borodina

Research subject. The melilite-olivine nephelinite subvolcanic body Tabaat, which includes melilite rocks found for the first time on the territory of Levant.Materials and methods. The chemical composition of minerals (about 400 analyzes) was determined out on a CAMECA SX-100 microanalyzer equipped with five wave spectrometers with crystal analyzers TAP, LPET and LLIF. The elemental composition was measured at an accelerating voltage of 15 kV, an electron beam current of 40 nA. The oxygen concentration was calculated from the condition of stoichiometric composition of silicate minerals and chromite. In addition, the results of earlier studies of minerals (150 analyses) and data on melt inclusions were used.Results. The Tabaat subvolcanic body, which is part of the Early Cretaceous olivine-basalt-basanite-nephelinite association Makhtesh Ramona (Negev, Israel), has a complex concentrically-zonal structure, with olivine melanephelinites in the peripheral zone, melilite-olivine melanephelinites in the central and connecting zones normative and, less often, melilite-containing melanephelinites. Prismatic separation is widely manifested in the rocks. The fold-like bending and concave-curved edges of the prisms are a reflection of the plastic state of the cooling body and its ability to compress and accommodate a high fluid pressure, which develops during the formation of melilite nephelinites.Conclusion. All mineral diversity of rocks of the Mt. Tabaat is a derivative of a single portion of magmatic melt under conditions of its adiabatic cooling at the place of stabilization. A special role in the course of crystallization of the massif belongs to minerals with a high water content – analcime, zeolites, iddingsites, bowlingites and saponite-celadonites, which indicate the deuteric stage of its development. The study of melt inclusions in olivine and clinopyroxene showed the continuity of their composition with the composition of host melilite nephelinites and the importance of incongruent melting during the formation of melilite, which is a product of the reaction of nepheline with olivine or clinopyroxene.


2021 ◽  
Vol 168 ◽  
pp. 112676
Author(s):  
Hiroki Kaminaga ◽  
Toshikio Takimoto ◽  
Akira Tonegawa ◽  
Kohnosuke Sato

2021 ◽  
Vol 24 (2) ◽  
pp. 97-108
Author(s):  
G. G. Lazareva ◽  
V. A. Popov ◽  
A. S. Arakcheev ◽  
A. V. Burdakov ◽  
I. V. Shwab ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Michał Krysztof

AbstractThis article presents a field-emission electron gun intended for use in a MEMS (microelectromechanical system) electron microscope. Its fabrication process follows the technology of a miniature device under development built from silicon electrodes and glass spacers. The electron gun contains a silicon cathode with a single very sharp protrusion and a bundle of disordered CNTs deposited on its end (called a sharp silicon/CNT cathode). It was tested in diode and triode configurations. For the diode configuration, a low threshold voltage <1000 V and a high emission current that reached 90 µA were obtained. After 30 min of operation at 900 V, the emission current decreased to 1.6 µA and was stable for at least 40 min, with RMS fluctuation in the anode current lower than 10%. The electron beam spot of the source was observed on the phosphor screen. In the diode configuration, the spot size was the same as the emission area (~10 µm), which is a satisfactory result. In the triode configuration, an extraction electrode (gate) control function was reported. The gate limited the emission current and elongated the lifetime of the gun when the current limit was set. Moreover, the electron beam current fluctuations at the anode could be reduced to ~1% by using a feedback loop circuit that controls the gate voltage, regulating the anode current. The developed sharp silicon/CNT cathodes were used to test the MEMS electron source demonstrator, a key component of the MEMS electron microscope, operating under atmospheric pressure conditions. Cathodoluminescence of the phosphor layer (ZnS:Ag) deposited on the thin silicon nitride membrane (anode) was observed.


Sign in / Sign up

Export Citation Format

Share Document