Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy

2013 ◽  
Vol 23 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Faruk MERT ◽  
Ahmet ÖZDEMIR ◽  
Karl Ulrich KAINER ◽  
Norbert HORT
2007 ◽  
Vol 546-549 ◽  
pp. 167-170 ◽  
Author(s):  
Li Ming Peng ◽  
Peng Huai Fu ◽  
Hai Yan Jiang ◽  
Chun Quan Zhai

Compact AM50 alloy components were cast by Low Pressure Die Casting (LPDC) process. The microstructure and mechanical properties of cast components were investigated under as-cast and heat treated states. It was found that the microstructure of LPDC AM50 is composed of α-Mg and second phases - Mg17Al12 and Al8Mn5. Compared with Gravity die casting, LPDC AM50 alloy had much coarser grains and higher density, with smaller sizes and less content of second phases. The density of AM50 alloy by LPDC process was ρ=1.7836g/cm3, with increase of 0.45% based on Gravity die casting and much more increase compared with high pressure die casting. The as-cast mechanical properties by LPDC process were: σ0.2=57.8Mpa, σb=192.3Mpa, δ=8.7%. These of Gravity die casting were: σ0.2=53Mpa, σb=173.4Mpa, δ=8.1%. UTS in LPDC increased about 20MPa, with better YTS and Elongation. Compared with that of high pressure die cast AM50, the YTS of LPDC was much lower, with comparable UTS and Elongation. The mechanical properties of the heat treated AM50 alloy were still in the same level of as-cast state. AM50 alloy by LPDC process is not necessary subjected to tempering treatment.


2005 ◽  
Vol 488-489 ◽  
pp. 713-716 ◽  
Author(s):  
Soon Gi Lee ◽  
Gautam R. Patel ◽  
Arun M. Gokhale

The normal and inverse solute macro-segregation are known to occur in Al and other nonferrous alloy castings and have been well studied and documented. However, these phenomena have not been investigated in the high-pressure die-cast Mg-alloys. Consequently, the effects of macro-segregation on the mechanical properties of cast Mg-alloys have not been characterized. The objective of this contribution is to investigate the effects of inverse macro-segregation and porosity on the fatigue behavior of high-pressure die-cast AM60 alloy. It is observed that the inverse macro-segregation of eutectic phase at the cast surfaces adversely affects the fatigue behavior: the fatigue resistance decreases substantially due to the presence of the surface segregation.


Sign in / Sign up

Export Citation Format

Share Document