az91d magnesium alloy
Recently Published Documents


TOTAL DOCUMENTS

742
(FIVE YEARS 93)

H-INDEX

58
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6446
Author(s):  
Jarosław Korpysa ◽  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski

This study investigates a precision milling process conducted with the use of conventional end mills and a standard CNC (Computer Numerical Control) machine tool. Milling tests were performed on samples of AZ91D magnesium alloy using TiB2- and TiAlN-coated three-edge end mills measuring 16 mm in diameter. The following technological parameters were made variable: cutting speed, feed per tooth and axial depth of cut. The effects of precision milling were evaluated by analysing the scatter of dimension values obtained in successive tool passes. In addition to that, deviations from the assumed nominal depth as well as obtained ranges of dimension varation were analysed. The study also examined surface quality obtained in the precision milling process, based on the basic surface roughness parameters: Ra, Rz and RSm. Results have confirmed that the use of conventional cutting tools and a standard CNC machine tool makes it possible to manufacture components characterized by relatively small scatter of dimension values and high accuracy classes. Additionally, the results have shown that the type of tool coating and variations of individual technological parameters exert impact on the dimensional accuracy and surface quality obtained.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5903
Author(s):  
Michał Tacikowski ◽  
Janusz Kamiński ◽  
Krzysztof Rożniatowski ◽  
Marcin Pisarek ◽  
Rafał Jakieła ◽  
...  

Coating magnesium alloys with nitride surface layers is a prospective way of improving their intrinsically poor surface properties; in particular, their tribological and corrosion resistance. These layers are usually produced using PVD methods using magnetron sputtering or arc evaporation. Even though the thus-produced layers significantly increase the wear resistance of the alloys, their effects on corrosion resistance are unsatisfactory because of the poor tightness, characteristic of PVD-produced products. Tightness acquires crucial significance when the substrate is a highly-active magnesium alloy, hence our idea to tighten the layers by subjecting them to a post-deposition chemical-hydrothermal-type treatment. This paper presents the results of our experiments with a new hybrid surface engineering method, using a final tightening pressure hydrothermal gas treatment in overheated steam of the composite titanium nitride layers PVD, produced on AZ91D magnesium alloy. The proposed method resulted in an outstanding improvement of the performance properties, in particular resistance to corrosion and wear, yielding values that exceed those exhibited by commercially anodized alloys and austenitic stainless 316L steel. The developed hybrid method produces new, high-performance corrosion and wear resistant, lightweight magnesium base materials, suitable for heavy duty applications.


Sign in / Sign up

Export Citation Format

Share Document