Scale up and stability test for oxidative coupling of methane over Na2WO4-Mn/SiO2 catalyst in a 200 ml fixed-bed reactor

2008 ◽  
Vol 17 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Haitao Liu ◽  
Xiaolai Wang ◽  
Dexin Yang ◽  
Runxiong Gao ◽  
Zhonglai Wang ◽  
...  
2017 ◽  
Vol 21 (3) ◽  
pp. 77-99 ◽  
Author(s):  
Salamah Manundawee ◽  
Amornchai Arpornwichanop ◽  
Suttichai Assabumrungrat ◽  
Wisitsree Wiyaratn

2018 ◽  
Vol 57 (48) ◽  
pp. 16295-16307 ◽  
Author(s):  
Laura Pirro ◽  
Ana Obradović ◽  
Bart D. Vandegehuchte ◽  
Guy B. Marin ◽  
Joris W. Thybaut

1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


Author(s):  
Nakisa Yaghobi ◽  
Mir Hamid Reza Ghoreishy

The aim of this work is to develop and compare kinetic models for the oxidative coupling of methane (OCM) based on the gas hourly space velocity (GHSV) value and CH4/O2 ratio in two scales: laboratory and bench. The experiments were carried out in tubular fixed bed reactors at 1023 K, using 0.7-1.5 g and 30 g of perovskite titanate as the reaction catalyst for laboratory and bench scales, respectively. The various GHSVs (8000, 12000, 17000 h-1) and (3400, 4300, 5200 h-1) and methane to oxygen ratios (1, 2, 3, 4, 7.5) and (2, 2.5, 3) were selected for laboratory and bench scales, respectively. We have proposed a mechanism in which the consumption rate of methane is always twice of production rate of C2. A power law model was assumed for rate of reaction in terms of partial pressure of oxygen and methane. Using a linear regression analysis, the kinetic models were determined. Comparison of the calculated rate of reaction with the experimentally measured data confirmed the accuracy and applicability of the developed model for both scales.


Sign in / Sign up

Export Citation Format

Share Document