Design of a continuous flow immobilized-cell reactor for biosynthetical production of L-aspartic acid

1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.

1990 ◽  
Vol 55 (9) ◽  
pp. 2192-2198
Author(s):  
Marie Fialová ◽  
Jindřich Zahradník ◽  
Hana Kučerová

An experimental study was carried out, aimed at establishing an engineering data base for the optimum design of a pilot-plant fixed bed reactor for continuous biotransformation of natrium fumarate to L-malic acid catalysed by immobilized bacterial cells. Cells Corynebacterium sp. immobilized in calcium alginate were used for experiments. Effective reaction kinetics including the effect of transport phenomena in the bed was determined and conditions of the safe conversion data scale up were defined. Regarding the requirements of continuous production, long-term stability of the biocatalytic system was tested at operation conditions corresponding to constant degree of substrate conversion at the reactor outlet. Quantitative evidence on changes of the effective reaction kinetics (i.e. on the decrease of the effective rate constant value) over the three-months production period was obtained from this experimental run. Decisive design parameters of a pilot-plant reactor were calculated for estimated production of 20 t of L-malic acid per 90 days period (maximum time of economic biocatalyst utilization).


2017 ◽  
Vol 11 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Rebecca Faschian ◽  
Ilyas Eren ◽  
Steven Minden ◽  
Ralf Pörtner

Fixed-bed processes, where cells are immobilized within macroporous carriers, are a promising alternative to processes with suspended cells. A scale-up concept is presented in order to evaluate the performance as part of process design of fixed-bed processes. Therefore,Lactococcus lactiscultivation in chemostat and batch mode was compared to fixed bed cultures on three different scales, the smallest being the downscaledMultifermwith 10 mL fixed bed units, the second a 100 mL fixed-bed reactor and the third a pilot scale reactor with 1 L fixed bed volume. As expected, the volume specific lactate productivity of all cultivations was dependent on dilution rate. In suspension chemostat culture a maximum of 2.3 g·L-1·h-1was reached. Due to cell retention in the fixed-beds, productivity increased up to 8.29 g·L-1·h-1at a dilution rate of D = 1.16 h-1(corresponding to 2.4·µmax) on pilot scale. For all fixed bed cultures a common spline was obtained indicating a good scale-up performance.


2021 ◽  
Vol 891 ◽  
pp. 31-36
Author(s):  
Jirah Emmanuel T. Nolasco ◽  
Camille Margaret S. Alvarillo ◽  
Joshua L. Chua ◽  
Ysabel Marie C. Gonzales ◽  
Jem Valerie D. Perez

Continuous fixed-bed column studies were performed using nanocomposite beads made up of chitosan, polyethyleneimine, and graphene oxide as adsorbents for the removal of methyl orange (MO) in water. The effects of different operating parameters such as initial MO concentration (5, 10, and 15 ppm), bed height (10, 17.5, and 25 cm), and flow rate (27, 43, and 58 mL/min) were investigated using an upward-flow fixed-bed column set-up. The breakthrough curves generated were fitted with Adams-Bohart, Thomas, Yoon-Nelson, and Yan et al. models. The results showed that Yan et al. model agreed best with the breakthrough curves having an R2 as high as 0.9917. Lastly, design parameters for a large-scale adsorption column were determined via scale-up approach using the parameters obtained from column runs.


2020 ◽  
Vol 10 (3) ◽  
pp. 1080 ◽  
Author(s):  
Qian Yu ◽  
Wim Brilman

Direct air capture (DAC) of CO2 can address CO2 emissions from distributed sources and produce CO2 from air virtually anywhere that it is needed. In this paper, the performance of a new radial flow reactor (RFR) for CO2 adsorption from ambient air is reported. The reactor uses a supported amine sorbent and is operated in a batch mode of operation or semi-continuously, respectively without or with sorbent circulation. The radial flow reactor, containing 2 kg of the adsorbent, is successfully scaled up from the experimental results obtained with a fixed bed reactor using only 1 g of the adsorbent. In the batch operation mode, the sorbent in the annular space of the RFR is regenerated in situ. With sorbent circulation, the RFR is loaded and unloaded batchwise and only used as an adsorber. A sorbent batch loaded with CO2 is transported to and regenerated in an external (fluid bed) regenerator. The RFR unit is characterized by a low contacting energy (0.7–1.5 GJ/ton-CO2) and a relatively short adsorption time (24–43 min) compared to other DAC processes using the same types of sorbents. The contactor concept is ready for further scale-up and continuous application.


2003 ◽  
Vol 14 (4) ◽  
pp. 461-472 ◽  
Author(s):  
Sameer Al-Asheh ◽  
Fawzi Banat

In this work, the sorption of copper by chemically treated chicken feathers was tested via packed-bed column. Chicken feathers were selected as adsorbent based on its high availability as environmental waste. The alkaline-treated chicken feathers column showed good sorption capacity toward copper and zinc ions. It was proved that an increase in metal concentration or flow rate of the influent solution shortens the break-through time. The break-through time increased with the bed depth. The break-through time occurred earlier when zinc was passed through the column rather than copper, but the bed capacity was higher for the later than for the former. The key process design parameters, which could serve as a basis for sorption process scale up, were calculated by applying the Bed-Depth-Service-Time (BDST) model to the experimental data.


2013 ◽  
Vol 11 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Xingxing Cheng ◽  
Xiaotao T. Bi

Abstract A NOx adsorption kinetic model including NO oxidation and adsorption was developed. The NOx and O2 adsorption experimental data from a fixed bed were found to be fitted well to the Freundlich type isotherm. An axial dispersion adsorption model was then developed to simulate the breakthrough curve for NOx adsorption in the fixed bed. The model parameters including mass transfer coefficient and axial dispersion coefficient were fitted from the NOx breakthrough curves measured in a fixed bed. This model can be used for design and scale-up of fixed bed NOx adsorption columns. It can also be extended for the modeling of NOx adsorption in the annulus region of the circulating fluidized bed reactor for catalytic reduction of NOx.


2008 ◽  
Vol 17 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Haitao Liu ◽  
Xiaolai Wang ◽  
Dexin Yang ◽  
Runxiong Gao ◽  
Zhonglai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document