Secure and efficient anonymous proxy signature scheme in the random oracle model

Author(s):  
De-dong ZHANG ◽  
Zhao-feng MA ◽  
Xin-xin NIU ◽  
Guo-you LI
2013 ◽  
Vol 411-414 ◽  
pp. 721-724 ◽  
Author(s):  
Bao Dian Wei

Most of the existing ID-based designated verifier proxy signature schemes are implemented with pairings. The computation of parings is still much more expensive than the common modular multiplications and exponentiations. To obtain better efficiency, we construct an efficient ID-based DVPS scheme without pairings. The scheme is designed based on the hardness of the discrete logarithm problems. It is proven secure against adaptively chosen message attacks, in the random oracle model.


2010 ◽  
Vol 40-41 ◽  
pp. 643-646
Author(s):  
Qi Xie

The aim of self proxy is to protect the signer’s permanent secret key. In 2007, Kim and Chang proposed a self proxy signature scheme. In this paper, we show that their scheme cannot resist the warrant revision attack. Anyone can forge a valid proxy warrant and generate a valid self proxy signature for any message, when he gets a self proxy signature. To overcome their weakness, an improvement scheme is proposed, which is provably secure in random oracle model.


2021 ◽  
Vol 15 (1) ◽  
pp. 117-137
Author(s):  
Salome James ◽  
Gowri Thumbur ◽  
Vasudeva Reddy P.

In many real-world situations, signature schemes with message recovery plays a very important role to minimize the bandwidth for efficient communications. A proxy signature scheme is a kind of digital signature scheme that allows an original signer to designate his/her signing capacity to a proxy signer. The proxy signer generates a signature on a message on behalf of the original signer. Such signatures are very useful in various applications where the delegation rights is quite common, especially in distributed systems and grid computing. This paper presents a pairing-free proxy signature with message recovery scheme that integrates the advantages of proxy signatures and message recovery in identity based setting. This scheme improves the computational and communicational efficiency due to pairing-free and message recovery features. The proposed scheme is proven secure in the random oracle model under the hardness assumption of the ECDLP. The comparison results shows that the proposed scheme is superior to the related works from the aspect of security and performance.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Baoyuan Kang

In a designated verifier proxy signature scheme, there are three participants, namely, the original signer, the proxy signer, and the designated verifier. The original signer delegates his or her signing right to the proxy signer, then the proxy signer can generate valid signature on behalf of the original signer. But only the designated verifier can verify the proxy signature. Several designated verifier proxy signature schemes have been proposed. However, most of them were proven secure in the random oracle model, which has received a lot of criticism since the security proofs in the random oracle model are not sound with respect to the standard model. Recently, by employing Water's hashing technique, Yu et al. proposed a new construction of designated verifier proxy signature. They claimed that the new construction is the first designated verifier proxy signature, whose security does not rely on the random oracles. But, in this paper, we will show some attacks on Yu et al.'s scheme. So, their scheme is not secure.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Quanrun Li ◽  
Chingfang Hsu ◽  
Debiao He ◽  
Kim-Kwang Raymond Choo ◽  
Peng Gong

With the rapid development of quantum computing and quantum information technology, the universal quantum computer will emerge in the near decades with a very high probability and it could break most of the current public key cryptosystems totally. Due to the ability of withstanding the universal quantum computer’s attack, the lattice-based cryptosystems have received lots of attention from both industry and academia. In this paper, we propose an identity-based blind signature scheme using lattice. We also prove that the proposed scheme is provably secure in the random oracle model. The performance analysis shows that the proposed scheme has less mean value of sampling times and smaller signature size than previous schemes. Thus, the proposed scheme is more suitable for practical applications.


2015 ◽  
Vol 9 (1) ◽  
pp. 47-61
Author(s):  
Anser Ghazzaal Ali Alquraishee ◽  
Jayaprakash Kar ◽  
Naomie Salim

This article proposes a novel construction of short Online/Off-line signature scheme with provable security in the random oracle model for wireless sensor network (WSN). Security of the proposed scheme relies on k-CAA Problem as well as Computational Diffie-Hellman problem and is resistant against chosen message attack. The scheme is suited for broadcast authentication and integrity of message exchanging between the sensor nodes. The process of generation of the signature is carried out in two phases online and off-line. The heavy computation is performed in off-line phase, i.e the base station. The actual signature will be generated in the sensor nodes. The authors assume that the online phase is more efficient. Here they have evaluated the size of the signature with respect to the size of the user's public key and compare with some current schemes. Also, the authors have evaluated the computational cost and time which shows the scheme is most suited to implement on sensor node.


Sign in / Sign up

Export Citation Format

Share Document