scholarly journals An Efficient Certificateless Blind Signature Scheme in the Random Oracle Model

Author(s):  
Hao Xu ◽  
Baoyuan Kang ◽  
Yongzheng Niu
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Quanrun Li ◽  
Chingfang Hsu ◽  
Debiao He ◽  
Kim-Kwang Raymond Choo ◽  
Peng Gong

With the rapid development of quantum computing and quantum information technology, the universal quantum computer will emerge in the near decades with a very high probability and it could break most of the current public key cryptosystems totally. Due to the ability of withstanding the universal quantum computer’s attack, the lattice-based cryptosystems have received lots of attention from both industry and academia. In this paper, we propose an identity-based blind signature scheme using lattice. We also prove that the proposed scheme is provably secure in the random oracle model. The performance analysis shows that the proposed scheme has less mean value of sampling times and smaller signature size than previous schemes. Thus, the proposed scheme is more suitable for practical applications.


2014 ◽  
Vol 519-520 ◽  
pp. 462-465
Author(s):  
Lin Cheng ◽  
Qiao Yan Wen ◽  
Dong Bo

Partially blind signature is an important technique in secure electronic cash system. Recently, Zhang et al. presented the first certificateless partially blind signature scheme and constructed an electronic cash system based on this scheme. They claimed that their certificateless partially blind signature scheme is secure in the random oracle model. However, in this paper, we demonstrate the scheme is not secure. Our attack indicates that a malicious KGC in the electronic cash system based on Zhang et al.'s certificateless partially blind signature can forge valid electronic coins without being detected by the bank. It will result in loss of the bank.


2013 ◽  
Vol 457-458 ◽  
pp. 1262-1265
Author(s):  
Min Qin Chen ◽  
Qiao Yan Wen ◽  
Zheng Ping Jin ◽  
Hua Zhang

Based an identity-based signature scheme, we givea certificateless signature scheme. And then we propose a certificateless blind signature (CLBS) scheme in this paper. This schemeis more efficient than those of previous schemes by pre-computing the pairing e (P, P)=g. Based on CL-PKC, it eliminates theusing of certificates in the signature scheme with respect to thetraditional public key cryptography (PKC) and solves key escrowproblems in ID-based signature schemes. Meanwhile it retains themerits of BS schemes. The proposed CLBS scheme is existentialunforgeable in the random oracle model under the intractabilityof the q-Strong Diffie-Hellman problem.


2010 ◽  
Vol 439-440 ◽  
pp. 1265-1270 ◽  
Author(s):  
Jian Hong Zhang ◽  
Hua Chen ◽  
Yi Xian Yang

As a special anonymous signature, the blindness of blind signatures makes it play an important role in electronic commerce. In this paper we first propose a novel blind signature scheme from bilinear pairings. Furthermore, we also give a formal proof of security for the proposed schemes in the random oracle model. And we show that the scheme satisfies the two properties of blind signature: blindness and unforgeability. As for efficiency of the scheme, the size of our blind signature is 320 bits, and no pairings operator are required in the blind signing phas and two pairing operators are needed I the verification phase.


2015 ◽  
Vol 9 (1) ◽  
pp. 47-61
Author(s):  
Anser Ghazzaal Ali Alquraishee ◽  
Jayaprakash Kar ◽  
Naomie Salim

This article proposes a novel construction of short Online/Off-line signature scheme with provable security in the random oracle model for wireless sensor network (WSN). Security of the proposed scheme relies on k-CAA Problem as well as Computational Diffie-Hellman problem and is resistant against chosen message attack. The scheme is suited for broadcast authentication and integrity of message exchanging between the sensor nodes. The process of generation of the signature is carried out in two phases online and off-line. The heavy computation is performed in off-line phase, i.e the base station. The actual signature will be generated in the sensor nodes. The authors assume that the online phase is more efficient. Here they have evaluated the size of the signature with respect to the size of the user's public key and compare with some current schemes. Also, the authors have evaluated the computational cost and time which shows the scheme is most suited to implement on sensor node.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Congge Xie ◽  
Jian Weng ◽  
Jinming Wen

In 2014, a new security definition of a revocable identity-based signature (RIBS) with signing key exposure resistance was introduced. Based on this new definition, many scalable RIBS schemes with signing key exposure resistance were proposed. However, the security of these schemes is based on traditional complexity assumption, which is not secure against attacks in the quantum era. Lattice-based cryptography has many attractive features, and it is believed to be secure against quantum computing attacks. We reviewed existing lattice-based RIBS schemes and found that all these schemes are vulnerable to signing key exposure. Hence, in this paper, we propose the first lattice-based RIBS scheme with signing key exposure resistance by using the left-right lattices and delegation technology. In addition, we employ a complete subtree revocation method to ensure our construction meeting scalability. Finally, we prove that our RIBS scheme is selective-ID existentially unforgeable against chosen message attacks (EUF-sID-CMA) under the standard short integer solutions (SIS) assumption in the random oracle model.


2011 ◽  
Vol 63-64 ◽  
pp. 785-788
Author(s):  
Fan Yu Kong ◽  
Lei Wu ◽  
Jia Yu

In 2009, R. Tso et al. proposed an efficient pairing-based short signature scheme which is provably secure in the Random Oracle Model. In this paper, we propose a new key substitution attack on Raylin Tso et al.’s short signature scheme. For a given message and the corresponding valid signature, the malicious attacker can generate a substituted public key. Everyone verifies the signature successfully with the malicious attacker’s substituted public key. Therefore, Raylin Tso et al.’s short signature scheme has a security flaw in the multi-user setting.


Sign in / Sign up

Export Citation Format

Share Document