C-reactive protein increases complement mediated ischemia-reperfusion injury in heart transplants

2002 ◽  
Vol 21 (1) ◽  
pp. 133-134
Author(s):  
S Cao ◽  
J Liu ◽  
S Rahimi ◽  
W.M Baldwin
2013 ◽  
Vol 304 (11) ◽  
pp. F1358-F1365 ◽  
Author(s):  
Melissa A. Pegues ◽  
Mark A. McCrory ◽  
Abolfazl Zarjou ◽  
Alexander J. Szalai

Renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), occurring with hypotension and cardiovascular surgery and inevitably during kidney transplantation. Mortality from AKI is high due to incomplete knowledge of the pathogenesis of IRI and the lack of an effective therapy. Inflammation accompanies IRI and increases the blood level of C-reactive protein (CRP), a biomarker of worsened outcomes in AKI. To test if CRP is causal in AKI we subjected wild-type mice (WT) and human CRP transgenic mice (CRPtg) to bilateral renal IRI (both pedicles clamped for 30 min at 37°C then reperfused for 24 h). Serum human CRP level was increased approximately sixfold after IRI in CRPtg (10.62 ± 1.31 μg/ml at baseline vs. 72.01 ± 9.41 μg/ml at 24 h) but was not elevated by sham surgery wherein kidneys were manipulated but not clamped. Compared with WT, serum creatinine, urine albumin, and histological evidence of kidney damage were increased after IRI in CRPtg mice. RT-PCR analysis of mRNA isolated from whole kidneys of CRPtg and WT subjected to IRI revealed that in CRPtg kidneys 1) upregulation of markers of macrophage classical activation (M1 markers) was blunted, 2) downregulation of markers of macrophage alternative activation (M2 markers) was more robust, and 3) expression of the activating receptor FcγRI was increased. Our finding that CRP exacerbates IRI-induced AKI, perhaps by shifting the balance of macrophage activation and FcγR expression towards a detrimental portfolio, might make CRP a promising therapeutic target for the treatment of AKI.


2014 ◽  
Vol 52 (1-2) ◽  
pp. 50-62 ◽  
Author(s):  
Gwendolyn M.P. Diepenhorst ◽  
Wilmar de Graaf ◽  
Hans W. Niessen ◽  
Arlène K. van Vliet ◽  
C. Erik Hack ◽  
...  

2007 ◽  
Vol 123 ◽  
pp. S185-S186 ◽  
Author(s):  
Xinyue Lu ◽  
Russell Peckham ◽  
Michael Falabella ◽  
George C. Tsokos

2016 ◽  
Vol 311 (1) ◽  
pp. F176-F181 ◽  
Author(s):  
Melissa A. Pegues ◽  
Ian L. McWilliams ◽  
Alexander J. Szalai

Myeloid-derived suppressor cells (MDSCs) are a CD11b+Gr1+ population in mice that can be separated into granulocytic (g-MDSC) and monocytic (m-MDSC) subtypes based on their expression of Ly6G and Ly6C. Both MDSC subtypes are potent suppressors of T cell immunity, and their contribution has been investigated in a plethora of diseases including renal cancer, renal transplant, and chronic kidney disease. Whether MDSCs contribute to the pathogenesis of acute kidney injury (AKI) remains unknown. Herein, using human C-reactive protein (CRP) transgenic (CRPtg) and CRP-deficient mice (CRP−/−) subjected to bilateral renal ischemia-reperfusion injury (IRI), we confirm our earlier finding that CRP exacerbates renal IRI and show for the first time that this effect is accompanied in CRPtg mice by a shift in the balance of kidney-infiltrating MDSCs toward a suppressive Ly6G+Ly6Clow g-MDSC subtype. In CRPtg mice, direct depletion of g-MDSCs (using an anti-Gr1 monoclonal antibody) reduced the albuminuria caused by renal IRI, confirming they play a deleterious role. Remarkably, treatment of CRPtg mice with an antisense oligonucleotide that specifically blocks the human CRP acute-phase response also led to a reduction in renal g-MDSC numbers and improved albuminuria after renal IRI. Our study in CRPtg mice provides new evidence that MDSCs participate in the pathogenesis of renal IRI and shows that their pharmacological depletion is beneficial. If ongoing investigations confirm that CRP is an endogenous regulator of MDSCs in CRPtg mice, and if this action is recapitulated in humans, then targeting CRP or/and MDSCs might offer a new approach for the treatment of AKI.


Sign in / Sign up

Export Citation Format

Share Document