Size Effect Aspects of Measurement of Fracture Characteristics of Quasibrittle Material

1996 ◽  
Vol 4 (3-4) ◽  
pp. 128-137 ◽  
Author(s):  
Z Bazant
1987 ◽  
Vol 26 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Zdeněk P. Bažant ◽  
Soo-Gon Lee ◽  
Phillip A. Pfeiffer

1996 ◽  
Vol 118 (3) ◽  
pp. 317-324 ◽  
Author(s):  
Zdeneˇk P. Bazˇant ◽  
Isaac M. Daniel ◽  
Zhengzhi Li

Measurements of the size effect on the nominal strength of notched specimens of fiber composite laminates are reported. Tests were conducted on graphite/epoxy crossply and quasi-isotropic laminates. The specimens were rectangular strips of widths 6.4, 12.7, 25.4 and 50.8 mm (0.25, 0.50, 1.00 and 2.00 in.) geometrically similar in two dimensions. The gage lengths were 25, 51, 102 and 203 mm (1.0, 2.0, 4.0 and 8.0 in.). One set of specimens had double-edge notches and a [0/922]s crossply layup, and another set had a single-sided edge notch and a [0/±45/90]s, quasi-isotropic layup. It has been found that there is a significant size effect on the nominal strength. It approximately agrees with the size effect law proposed by Bazˇant, according to which the curve of the logarithm of the nominal strength versus the logarithm of size represents a smooth transition from a horizontal asymptote, corresponding to the strength criterion (plastic limit analysis), to an inclined asymptote of −0.5 slope, corresponding to linear elastic fracture mechanics. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, particularly the fracture energy and the effective length of the fracture process zone. Finally, the R-curves are also identified on the basis of the maximum load data. The results show that in design situations with notches or large initial traction-free cracks the size effect on the nominal strength of fiber composite laminates must be taken into account.


Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


1998 ◽  
Vol 08 (PR8) ◽  
pp. Pr8-63-Pr8-70
Author(s):  
S. Carassou ◽  
M. Soilleux ◽  
B. Marini

Sign in / Sign up

Export Citation Format

Share Document