Electron Microscopy of Metal-Matrix Composites

Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.

Author(s):  
Gilles L'Espérance ◽  
David J. Lloyd

From the very beginning of the development of metal matrix composites, (MMC's), electron microscopy has played a major role in their development. Thus, analytical transmission electron microscopy, (ATEM), has been used to characterize and study: the reinforcements in MMC's, interfacial reactions and products that can occur at the interface between the matrix and the reinforcement and the detailed matrix microstructure, particularly the dislocation and grain structure and the precipitation/constituent phases. In this presentation, we will review and discuss the contribution of ATEM to each of these points and describe how it provided necessary information in the design and use of these materials. The presentation will mainly discuss Al-based composites although work from Ti and Mg-based composites will also be presented.


2000 ◽  
Vol 23 (1) ◽  
pp. 47-49 ◽  
Author(s):  
K. T. Kashyap ◽  
C. Ramachandra ◽  
C. Dutta ◽  
B. Chatterji

Sign in / Sign up

Export Citation Format

Share Document