Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load

2003 ◽  
Vol 25 (9) ◽  
pp. 781-787 ◽  
Author(s):  
Joyce H. Keyak ◽  
Yuri Falkinstein
2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


2013 ◽  
Vol 639-640 ◽  
pp. 992-997 ◽  
Author(s):  
Jian Ping Han ◽  
Yong Peng Luo

Using the static and dynamic test data simultaneously to update the finite element model can increase the available information for updating. It can overcome the disadvantages of updating based on static or dynamic test data only. In this paper, the response surface method is adopted to update the finite element model of the structure based on the static and dynamic test. Using the reasonable experiment design and regression techniques, a response surface model is formulated to approximate the relationships between the parameters and response values instead of the initial finite element model for further updating. First, a numerical example of a reinforced concrete simply supported beam is used to demonstrate the feasibility of this approach. Then, this approach is applied to update the finite element model of a prestressed reinforced concrete rigid frame-continuous girders bridge based on in-situ static and dynamic test data. Results show that this approach works well and achieve reasonable physical explanations for the updated parameters. The results from the updated model are in good agreement with the results from the in-situ measurement. The updated finite element model can accurately represent mechanical properties of the bridge and it can serve as a benchmark model for further damage detection and condition assessment of the bridge.


2018 ◽  
Vol 17 (6) ◽  
pp. 580-580
Author(s):  
Marco Viceconti ◽  
Muhammad Qasim ◽  
Pinaki Bhattacharya ◽  
Xinshan Li

Author(s):  
Antanas Daugela ◽  
Alex Meyman ◽  
Vladimir Knyazik ◽  
Nikolai Yeremin

A novel quantitative nano+micro-tribometer with integrated nanoindenter, SPM and optical microscope imaging has been used to characterize mechanical properties of Cu coated Si wafers at various test stages. A 2D Finite Element Model was developed to study changes on workhardened contacts assessed via nanoindentation experiments.


Sign in / Sign up

Export Citation Format

Share Document