Generation of active sites for ethane aromatization in ZSM-5 zeolites by a solid-state reaction of zinc metal with Brønsted acid sites of the zeolite

2001 ◽  
Vol 46 (2-3) ◽  
pp. 185-190 ◽  
Author(s):  
J. Heemsoth ◽  
E. Tegeler ◽  
F. Roessner ◽  
A. Hagen
Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2015
Author(s):  
Łukasz Kuterasiński ◽  
Małgorzata Smoliło-Utrata ◽  
Joanna Kaim ◽  
Wojciech Rojek ◽  
Jerzy Podobiński ◽  
...  

The aim of the present paper is to study the speciation and the role of different active site types (copper species and Brønsted acid sites) in the direct synthesis of furan from furfural catalyzed by copper-exchanged FAU31 zeolite. Four series of samples were prepared by using different conditions of post-synthesis treatment, which exhibit none, one or two types of active sites. The catalysts were characterized by XRD, low-temperature sorption of nitrogen, SEM, H2-TPR, NMR and by means of IR spectroscopy with ammonia and CO sorption as probe molecules to assess the types of active sites. All catalyst underwent catalytic tests. The performed experiments allowed to propose the relation between the kind of active centers (Cu or Brønsted acid sites) and the type of detected products (2-metylfuran and furan) obtained in the studied reaction. It was found that the production of 2-methylfuran (in trace amounts) is determined by the presence of the redox-type centers, while the protonic acid sites are mainly responsible for the furan production and catalytic activity in the whole temperature range. All studied catalysts revealed very high susceptibility to coking due to polymerization of furfural.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 425
Author(s):  
Khalid A. Al-Majnouni ◽  
Wojciech Supronowicz ◽  
Talal Aldugman ◽  
Nabil Al-Yassir ◽  
Ahmed Al-Zenaidi ◽  
...  

Catalytic cracking of hexane over steamed ZSM-5 is studied under steady state and dynamic conditions to elucidate the role of the active sites on the product distribution. The product distribution from the riser simulator representing the dynamic state of the catalyst cannot be resembled from monocracking or bimolecular reactions by Bronsted acid sites alone. The catalyst promotes the hydride transfer function which controls the hexane conversion at 460–500 °C that flips into methanation function at 550 °C with a propene to ethene ratio of 1.04. In addition, hydrogen induction is observed in the first two pulses. Steady state data obtained from a fixed bed reactor, on the other side, shows that the product distribution is controlled by monomolecular cracking with low yield of methane and high propene to ethene ratio ranging from 4.3 to 3.3 depending on the temperature and conversion. We are not able to explain these data by considering the Bronsted acid sites alone and suggest that Lewis acid sites with short-lived activity are not inactive in the carbon-carbon activation before fading by coke deactivation. The reported findings are of importance to academia and industry and are very relevant to fluid catalytic cracking (FCC) processes.


2016 ◽  
Vol 4 (15) ◽  
pp. 5706-5712 ◽  
Author(s):  
Khaled M. H. Mohammed ◽  
Arunabhiram Chutia ◽  
June Callison ◽  
Peter P. Wells ◽  
Emma K. Gibson ◽  
...  

Modulation of tetrahedral Sn(iv) active sites in framework architectures influences the generation of Lewis and Brønsted acid sites in heterogeneous catalysts.


Sign in / Sign up

Export Citation Format

Share Document