Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study

2001 ◽  
Vol 112 (5) ◽  
pp. 778-784 ◽  
Author(s):  
Zsuzsanna Pincze ◽  
Péter Lakatos ◽  
Csaba Rajkai ◽  
István Ulbert ◽  
George Karmos
2003 ◽  
Vol 51 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Laurel Trainor ◽  
Melissa McFadden ◽  
Lisa Hodgson ◽  
Lisa Darragh ◽  
Jennifer Barlow ◽  
...  

2020 ◽  
Vol 123 (4) ◽  
pp. 1320-1331 ◽  
Author(s):  
Martin Andermann ◽  
Roy D. Patterson ◽  
André Rupp

In recent years, electroencephalography and magnetoencephalography (MEG) have both been used to investigate the response in human auditory cortex to musical sounds that are perceived as consonant or dissonant. These studies have typically focused on the transient components of the physiological activity at sound onset, specifically, the N1 wave of the auditory evoked potential and the auditory evoked field, respectively. Unfortunately, the morphology of the N1 wave is confounded by the prominent neural response to energy onset at stimulus onset. It is also the case that the perception of pitch is not limited to sound onset; the perception lasts as long as the note producing it. This suggests that consonance studies should also consider the sustained activity that appears after the transient components die away. The current MEG study shows how energy-balanced sounds can focus the response waves on the consonance-dissonance distinction rather than energy changes and how source modeling techniques can be used to measure the sustained field associated with extended consonant and dissonant sounds. The study shows that musical dyads evoke distinct transient and sustained neuromagnetic responses in auditory cortex. The form of the response depends on both whether the dyads are consonant or dissonant and whether the listeners are musical or nonmusical. The results also show that auditory cortex requires more time for the early transient processing of dissonant dyads than it does for consonant dyads and that the continuous representation of temporal regularity in auditory cortex might be modulated by processes beyond auditory cortex. NEW & NOTEWORTHY We report a magnetoencephalography (MEG) study on transient and sustained cortical consonance processing. Stimuli were long-duration, energy-balanced, musical dyads that were either consonant or dissonant. Spatiotemporal source analysis revealed specific transient and sustained neuromagnetic activity in response to the dyads; in particular, the morphology of the responses was shaped by the dyad’s consonance and the listener’s musicality. Our results also suggest that the sustained representation of stimulus regularity might be modulated by processes beyond auditory cortex.


1994 ◽  
Vol 667 (2) ◽  
pp. 192-200 ◽  
Author(s):  
Daniel C. Javit ◽  
Mitchell Steinschneider ◽  
Charles E. Schroeder ◽  
Herbert G. Vaughan ◽  
Joseph C. Arezzo

2020 ◽  
Vol 51 (6) ◽  
pp. 359-364 ◽  
Author(s):  
Dean F. Salisbury ◽  
Anna R. Shafer ◽  
Timothy K. Murphy ◽  
Sarah M. Haigh ◽  
Brian A. Coffman

Background. The mismatch negativity (MMN) brainwave indexes novelty detection. MMN to infrequent pitch (pMMN) and duration (dMMN) deviants is reduced in long-term schizophrenia. Although not reduced at first psychosis, pMMN is inversely associated with left hemisphere Heschl’s gyrus (HG) gray matter volume within 1 year of first hospitalization for schizophrenia-spectrum psychosis, consistent with pathology of left primary auditory cortex early in disease course. We examined whether the relationship was present earlier, at first psychiatric contact for psychosis, and whether the same structural-functional association was apparent for dMMN. Method. Twenty-seven first-episode schizophrenia-spectrum (FESz) and 27 matched healthy comparison (HC) individuals were compared. EEG-derived pMMN and dMMN were measured by subtracting the standard tone waveform (80%) from the pitch- and duration-deviant waveforms (10% each). HG volumes were calculated from T1-weighted structural magnetic resonance imaging using Freesurfer. Results. In FESz, pMMN amplitudes at Fz were inversely associated with left HG (but not right) gray matter volumes, and dMMN amplitudes were associated significantly with left HG volumes and at trend-level with right HG. There were no structural-functional associations in HC. Conclusions. pMMN and dMMN index gray matter reduction in left hemisphere auditory cortex early in psychosis, with dMMN also marginally indexing right HG volumes. This suggest conjoint functional and structural pathology that affects the automatic detection of novelty with varying degrees of penetrance prior to psychosis. These brainwaves are sensitive biomarkers of pathology early in the psychotic disease course, and may serve as biomarkers of disease progression and as therapeutic outcome measures.


2007 ◽  
Vol 21 (3-4) ◽  
pp. 214-223 ◽  
Author(s):  
Israel Nelken ◽  
Nachum Ulanovsky

Animal models of MMN may serve both to further our understanding of neural processing beyond pure sensory coding and for unraveling the neural and pharmacological processes involved in the generation of MMN. We start this review by discussing the methodological issues that are especially important when pursuing a single-neuron correlate of MMN. Correlates of MMN have been studied in mice, rats, cats, and primates. Whereas essentially all of these studies demonstrated the presence of stimulus-specific adaptation, in the sense that responses to deviant tones are larger than the responses to standard tones, the presence of real MMN has been established only in a few. We argue for the use of more and better controls in order to clarify the situation. Finally, we discuss in detail the relationships between stimulus-specific adaptation of single-neuron responses, as established in the cat auditory cortex, and MMN. We argue that this is currently the only fully established correlate of true change detection, and hypothesize that it precedes and probably induces the neural activity that is eventually measured as MMN.


2010 ◽  
Vol 68 ◽  
pp. e273-e274
Author(s):  
Tomoyo Isoguchi ◽  
Ryohei Kanzaki ◽  
Hirokazu Takahashi

1989 ◽  
Vol 1 (4) ◽  
pp. 336-355 ◽  
Author(s):  
Michael Scherg ◽  
Jiri Vajsar ◽  
Terence W. Picton

The intracerebral generators of the human auditory evoked potentials were estimated using dipole source analysis of 14-channel scalp recordings. The response to a 400-msec toneburst presented every 0.9 sec could be explained by three major dipole sources in each temporal lobe. The first was a vertically oriented dipole located on the supratemporal plane in or near the auditory koniocortex. This contributed to the scalp-recorded N1 wave at 100 msec. The second was a vertically oriented dipole source located on the supratemporal plane somewhat anterior to the first. This contributed to both the Nl and the sustained potential (SP). The third was a laterally oriented dipole source that perhaps originated in the magnopyramidal temporal field. This contributed a negative wave to the lateral scalp recordings at the latency of 145 msec. A change in the frequency of the toneburst elicited an additional negativity in the scalp-recording —the mismatch negativity (MMN). When the frequency change was large, the mismatch negativity was composed of two distinct sources with sequential but partially overlapping activities. The earlier corresponded to the Nl dipole sources and the later to a more anteriorly located dipole with an orientation more lateral than Nl. Only the later source was active when the frequency change was small. MMN source activities peaked about 15 msec earlier in the contralateral hemisphere, while this difference was only 4 msec for the sources of the Nl.


1990 ◽  
Vol 2 (4) ◽  
pp. 344-357 ◽  
Author(s):  
Mikko Sams ◽  
Reijo Aulanko ◽  
Olli Aaltonen ◽  
Risto Näätänen

Event-related potentials (ERPs) to synthetic consonant–vowel syllables were recorded. Infrequent changes in such a syllable elicited a "mismatch negativity" as well as an enhanced N100 component of the ERP even when subjects did not pay attention to the stimuli. Both components are probably generated in the supratemporal auditory cortex suggesting that in these areas there are neural networks that are automatically activated by speech-specific auditory stimulus features such as formant transitions.


Sign in / Sign up

Export Citation Format

Share Document