S88: In vivo investigation of functional brain networks by CCEPs

2014 ◽  
Vol 125 ◽  
pp. S20-S21
Author(s):  
R. Matsumoto ◽  
T. Kunieda ◽  
A. Ikeda
Author(s):  
Riki Matsumoto ◽  
Takeharu Kunieda

The utility of single-pulse electrical stimulation (SPES) for epilepsy surgery has been highlighted in the last decade. When applied at a frequency of about 1 Hz, it can probe cortico-cortical connections by averaging electrocorticographic signal time-locked to stimuli to record cortico-cortical evoked potentials (CCEPs) emanating from adjacent and remote cortices. Although limited to patients undergoing invasive presurgical evaluations, CCEPs provide a novel way to explore inter-regional connectivity in vivo in the living human brain to probe functional brain networks such as language and cognitive motor networks. In addition to its impact on basic systems neuroscience, this method, in combination with 50 Hz electrical cortical stimulation, can contribute clinically to the mapping of functional brain systems by tracking cortico-cortical connections among functional cortical regions in individual patients. This approach may help identify normal cortico-cortical networks in pathological brain, or plasticity of brain systems in conjunction with pathology. Because of its high practical value, it has been applied to intraoperative monitoring of functional brain networks in patients with brain tumours. With regard to epilepsy, SPES has been used to probe cortical excitability of the focus (epileptogenicity) and seizure networks. Both early (i.e. CCEP) and delayed responses are regarded as surrogate markers of epileptogenicity. With regard to its potential impact on human brain connectivity maps, worldwide collaboration is warranted to establish standardized CCEP connectivity maps as a solid reference for non-invasive connectome research.


2017 ◽  
Author(s):  
Jonas Richiardi ◽  
Andre Altmann ◽  
Michael Greicius

AbstractOur 2015 paper (Richiardi et al., 2015), showed that transcriptional similarity of gene expression level is higher than expected by chance within functional brain networks (defined by functional magnetic resonance imaging), a relationship that is driven by around 140 genes. These results were replicated in vivo in adolescents, where we showed that SNPs of these genes where associated above chance with in-vivo fMRI connectivity, and in the mouse, where mouse orthologs of our genes showed above-chance association with meso-scale axonal connectivity. This paper has received a commentary on biorXiv (Pantazatos and Li, 2016), making several claims about our results and methods, mainly pointing out that Euclidean distance explains our results (“…high within-network SF is entirely attributable to proximity and is unrelated to functional brain networks…”). Here we address these claims and their weaknesses, and show that our original results stand, contrary to the claims made in the commentary.


2019 ◽  
Vol 45 (6) ◽  
pp. 964-974 ◽  
Author(s):  
JeYoung Jung ◽  
Sunyoung Choi ◽  
Kyu-Man Han ◽  
Aram Kim ◽  
Wooyoung Kang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Robert G. Lyday ◽  
Jonathan H. Burdette ◽  
Laura D. Baker ◽  
...  

Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the community structure of the default mode network (DMN), sensorimotor network (SMN), and the dorsal attention network (DAN) across the study population. The DMN and SMN exhibited a task-driven decline in consistency across the group when comparing the MI task to the resting state. The DAN, however, displayed an increase in consistency during the MI task. To our knowledge, this is the first study to use graph theory and network community structure to characterize the effects of a MI task, such as the MAT-sf, on overall brain network organization in older adults.


2018 ◽  
Vol 37 (1) ◽  
pp. 230-240 ◽  
Author(s):  
Thomas A. W. Bolton ◽  
Anjali Tarun ◽  
Virginie Sterpenich ◽  
Sophie Schwartz ◽  
Dimitri Van De Ville

Sign in / Sign up

Export Citation Format

Share Document