Microbial analyses by fluorescence in situ hybridization of well-settled granular sludge in brewery wastewater treatment plants

2002 ◽  
Vol 93 (6) ◽  
pp. 601-606 ◽  
Author(s):  
Yuko Saiki ◽  
Chikako Iwabuchi ◽  
Akiko Katami ◽  
Yasushi Kitagawa
2000 ◽  
Vol 41 (4-5) ◽  
pp. 85-90 ◽  
Author(s):  
H. Daims ◽  
P.H. Nielsen ◽  
J.L. Nielsen ◽  
S. Juretschko ◽  
M. Wagner

The frequency and distribution of putatively nitrite-oxidizing, Nitrospira- like bacteria in nitrifying biofilms from two reactors receiving wastewater with different ammonia and salt concentrations were observed by fluorescent in situ hybridization. For this purpose, new 16S rRNA-directed oligonucleotide probes targeting the bacterial phylum Nitrospira and the three main lineages within this phylum were developed and evaluated. The diversity of Nitrospira-like bacteria in the reactors was additionally investigated by retrieval and comparative analysis of full 16S rRNA sequences from the biofilms. We found that, despite of the differences in the influent composition, Nitrospira-like bacteria form dominant populations in both reactors. In addition, first insights into the physiology of these still unculturable bacteria were obtained by the incubation of active biofilm samples with radioactively labeled substrates followed by the combined application of fluorescent in situ hybridization and microautoradiography. The results are discussed in consideration of the frequently observed dominance of Nitrospira-like bacteria in nitrifying bioreactors. Consequently, high priority should be assigned to future studies on the ecology and physiology of these organisms in order to increase our fundamental understanding of nitrogen cycling and to enable knowledge-driven future improvements of nitrifying wastewater treatment plants.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 333-340 ◽  
Author(s):  
D.J. Kim ◽  
T.K. Kim ◽  
E.J. Choi ◽  
W.C. Park ◽  
T.H. Kim ◽  
...  

Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.


2011 ◽  
Vol 45 (15) ◽  
pp. 4634-4640 ◽  
Author(s):  
Yolanda Moreno ◽  
Lorena Ballesteros ◽  
Jorge García-Hernández ◽  
Paula Santiago ◽  
Ana González ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document