Kelvin-Helmholtz instability in a continuously forced shear flow

Author(s):  
E. Shearer ◽  
W.-G. Früh
2017 ◽  
Vol 815 ◽  
pp. 243-256
Author(s):  
Philippe Odier ◽  
Robert E. Ecke

Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. We explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbers$0.05\lesssim Ri\lesssim 1$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small$Ri$the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger$Ri$interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest$Ri$but decreases rapidly as$Ri$increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. The distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.


2002 ◽  
Vol 89 (15) ◽  
Author(s):  
R. Blaauwgeers ◽  
V. B. Eltsov ◽  
G. Eska ◽  
A. P. Finne ◽  
R. P. Haley ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 25-33
Author(s):  
Ilinca-Laura BURDULEA ◽  
Alina BOGOI

The topic of this paper is the Kelvin-Helmholtz instability, a phenomenon which occurs on the interface of a stratified fluid, in the presence of a parallel shear flow, when there is a velocity and density difference across the interface of two adjacent layers. This paper focuses on a numerical simulation modelled by the Taylor-Goldstein equation, which represents a more realistic case compared to the basic Kelvin-Helmholtz shear flow. The Euler system is solved with new modelled smooth velocity and density profiles at the interface. The flux at cell boundaries is reconstructed by implementing a third order WENO (Weighted Essentially Non-Oscillatory) method. Next, a Riemann solver builds the fluxes at cell interfaces. The use of both Rusanov and HLLC solvers is investigated. Temporal discretization is done by applying the second order TVD (total variation diminishing) Runge-Kutta method on a uniform grid. Numerical simulations are performed comparatively for both Kelvin-Helmholtz and Taylor-Goldstein instabilities, on the same simulation domains. We find that increasing the number of grid points leads to a better accuracy in shear layer vortices visualization. Thus, we can conclude that applying the Taylor-Goldstein equation improves the realism in the general fluid instability modelling.


2001 ◽  
Vol 442 ◽  
pp. 89-117 ◽  
Author(s):  
JAVIER JIMÉNEZ ◽  
MARKUS UHLMANN ◽  
ALFREDO PINELLI ◽  
GENTA KAWAHARA

The behaviour of turbulent shear flow over a mass-neutral permeable wall is studied numerically. The transpiration is assumed to be proportional to the local pressure fluctuations. It is first shown that the friction coefficient increases by up to 40% over passively porous walls, even for relatively small porosities. This is associated with the presence of large spanwise rollers, originating from a linear instability which is related both to the Kelvin–Helmholtz instability of shear layers, and to the neutral inviscid shear waves of the mean turbulent profile. It is shown that the rollers can be forced by patterned active transpiration through the wall, also leading to a large increase in friction when the phase velocity of the forcing resonates with the linear eigenfunctions mentioned above. Phase-lock averaging of the forced solutions is used to further clarify the flow mechanism. This study is motivated by the control of separation in boundary layers.


1999 ◽  
Vol 61 (1) ◽  
pp. 1-19 ◽  
Author(s):  
RONY KEPPENS ◽  
G. TÓTH ◽  
R. H. J. WESTERMANN ◽  
J. P. GOEDBLOED

We investigate the Kelvin–Helmholtz instability occurring at the interface of a shear-flow configuration in 2D compressible magnetohydrodynamics (MHD). The linear growth and the subsequent nonlinear saturation of the instability are studied numerically. We consider an initial magnetic field aligned with the shear flow, and analyse the differences between cases where the initial field is unidirectional everywhere (uniform case) and those where the field changes sign at the interface (reversed case). We recover and extend known results for pure hydrodynamic and MHD cases, with a discussion of the dependence of the nonlinear saturation on the wavenumber, the sound Mach number and the Alfvénic Mach number for the MHD case. A reversed field acts to destabilize the linear phase of the Kelvin–Helmholtz instability compared with the pure hydrodynamic case, while a uniform field suppresses its growth. In resistive MHD, reconnection events almost instantly accelerate the build up of a global plasma circulation. They play an important role throughout the further nonlinear evolution as well, since the initial current sheet is amplified by the vortex flow and can become unstable to tearing instabilities, forming magnetic islands. As a result, the saturation behaviour and the overall evolution of the density and the magnetic field are markedly different for the uniform versus the reversed-field case.


Sign in / Sign up

Export Citation Format

Share Document