magnetospheric boundary
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 6)

H-INDEX

27
(FIVE YEARS 0)

2022 ◽  
Vol 924 (1) ◽  
pp. L8
Author(s):  
Colin Littlefield ◽  
Jean-Pierre Lasota ◽  
Jean-Marie Hameury ◽  
Simone Scaringi ◽  
Peter Garnavich ◽  
...  

Abstract Magnetically gated accretion has emerged as a proposed mechanism for producing extremely short, repetitive bursts of accretion onto magnetized white dwarfs in intermediate polars (IPs), but this phenomenon has not been detected previously in a confirmed IP. We report the 27 day TESS light curve of V1025 Cen, an IP that shows a remarkable series of 12 bursts of accretion, each lasting for less than 6 hours. The extreme brevity of the bursts and their short recurrence times (∼1–3 days) are incompatible with the dwarf-nova instability, but they are natural consequences of the magnetic gating mechanism developed by Spruit and Taam to explain the Type II bursts of the accreting neutron star known as the Rapid Burster. In this model, the accretion flow piles up at the magnetospheric boundary and presses inward until it couples with the star’s magnetic field, producing an abrupt burst of accretion. After each burst, the reservoir of matter at the edge of the magnetosphere is replenished, leading to cyclical bursts of accretion. A pair of recent studies applied this instability to the suspected IPs MV Lyr and TW Pic, but the magnetic nature of these two systems has not been independently confirmed. In contrast, previous studies have unambiguously established the white dwarf in V1025 Cen to be significantly magnetized. The detection of magnetically gated bursts in a confirmed IP therefore validates the extension of the Spruit and Taam instability to magnetized white dwarfs.


Author(s):  
P. S. Wang ◽  
L. H. Lyu

A novel magnetosphere–ionosphere (M-I) coupling model is proposed to simulate the brightening of the onset auroral arc of a magnetospheric substorm event. The new M-I coupling model is modified from the M-I coupling model proposed by the Alaska research team in 1988. We adjust the magnetospheric boundary conditions by including the Hall effects in the thin current sheet and allowing the spatial distributions of the reflection–transmission coefficient to vary with time. As a result, brightening and poleward drifting of multiple auroral arcs appear for the first time in an M-I coupling model. The new results indicate that the coupled Hall effects in the near-Earth plasma sheet and the E-region ionosphere play a vital role in triggering the onset of a magnetospheric substorm.


Author(s):  
Paulina Quijia ◽  
Federico Fraternale ◽  
Julia E Stawarz ◽  
Christian L Vásconez ◽  
Silvia Perri ◽  
...  

Abstract The properties of turbulence observed within the plasma originating from the magnetosheath and the magnetospheric boundary layer, which have been entrained within vortices driven by the Kelvin-Helmholtz Instability (KHI), are compared. The goal of such a study is to determine similarities and differences between the two different regions. In particular, we study spectra, intermittency and the third-order moment scaling, as well as the distribution of a local energy transfer rate proxy. The analysis is performed using the Magnetospheric Multiscale (MMS) data from a single satellite that crosses longitudinally the KHI. Two sets of regions, one set containing predominantly magnetosheath plasma and the other containing predominantly magnetospheric plasma, are analyzed separately, thus allowing us to explore turbulence properties in two portions of very different plasma samples. Results show that the turbulence in the two regions is different, with the boundary layer plasma including current structures that may not be originated by the turbulent cascade. This suggests that the observed turbulence is affected by the KHI.


2021 ◽  
Author(s):  
Jit Sarkar ◽  
Swarniv Chandra ◽  
J. Goswami ◽  
C. Das ◽  
B. Ghosh

2020 ◽  
Vol 117 (28) ◽  
pp. 16193-16198
Author(s):  
Qing-He Zhang ◽  
Yong-Liang Zhang ◽  
Chi Wang ◽  
Michael Lockwood ◽  
Hui-Gen Yang ◽  
...  

A distinct class of aurora, called transpolar auroral arc (TPA) (in some cases called “theta” aurora), appears in the extremely high-latitude ionosphere of the Earth when interplanetary magnetic field (IMF) is northward. The formation and evolution of TPA offers clues about processes transferring energy and momentum from the solar wind to the magnetosphere and ionosphere during a northward IMF. However, their formation mechanisms remain poorly understood and controversial. We report a mechanism identified from multiple-instrument observations of unusually bright, multiple TPAs and simulations from a high-resolution three-dimensional (3D) global MagnetoHydroDynamics (MHD) model. The observations and simulations show an excellent agreement and reveal that these multiple TPAs are generated by precipitating energetic magnetospheric electrons within field-aligned current (FAC) sheets. These FAC sheets are generated by multiple-flow shear sheets in both the magnetospheric boundary produced by Kelvin–Helmholtz instability between supersonic solar wind flow and magnetosphere plasma, and the plasma sheet generated by the interactions between the enhanced earthward plasma flows from the distant tail (less than −100 RE) and the enhanced tailward flows from the near tail (about −20 RE). The study offers insight into the complex solar wind-magnetosphere-ionosphere coupling processes under a northward IMF condition, and it challenges existing paradigms of the dynamics of the Earth’s magnetosphere.


2019 ◽  
Vol 47 (1) ◽  
pp. 111-111
Author(s):  
S. Savin ◽  
G. Pallocchia ◽  
C. Wang ◽  
L. Legen

Our analysis of a sunward Poynting flux throughout magnetosheath and foreshock (directly measured byINTERBALL-1, CLUSTER-4 and DOUBLE STAR TC1), for the first time clearly demonstrates, how the resonances in the magnetospheric boundary layers are transmitted back wards the bow shock: the short pulses of the sunward Poynting flux initiate the strongest (>80%!) 3-wave interactions with the incident dynamic pressure. They start in the foreshock, regulate the bow shock position and oscillations, and then another near- magnetopause 3-wave strong interactions assist plasma flow extra deflections and acceleration downstream the magnetopause.


Author(s):  
Robert W. Ebert ◽  
Frederic Allegrini ◽  
Fran Bagenal ◽  
Chip R. Beebe ◽  
Maher A. Dayeh ◽  
...  

2015 ◽  
Vol 33 (3) ◽  
pp. 395-404 ◽  
Author(s):  
V. Pilipenko ◽  
V. Belakhovsky ◽  
M. J. Engebretson ◽  
A. Kozlovsky ◽  
T. Yeoman

Abstract. We compare simultaneous observations of long-period ultra-low-frequency (ULF) wave activity from a Svalbard/IMAGE fluxgate magnetometer latitudinal profile covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL) and narrowband Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of return signal of the Super Dual Auroral Radar Network (SuperDARN) radar covering the Svalbard archipelago, predictions of empirical cusp models, augmented whenever possible by Defense Meteorological Satellite Program (DMSP) identification of magnetospheric boundary domains. The meridional spatial structure of broadband dayside Pc5–6 pulsation spectral power has been found to have a localized latitudinal peak, not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. The earlier claims of the dayside monochromatic Pc5 wave association with the open–closed boundary also seems doubtful. Transient currents producing broadband Pc5–6 probably originate at the low-latitude boundary layer/central plasma sheet (LLBL/CPS) interface, though such identification with available DMSP data is not very precise. The occurrence of broadband Pc5–6 pulsations in the dayside boundary layers is a challenge to modelers because so far their mechanism has not been firmly identified.


Sign in / Sign up

Export Citation Format

Share Document