scholarly journals Modelling and control of discrete event systems using switching max-plus-linear systems

2004 ◽  
Vol 37 (18) ◽  
pp. 117-122 ◽  
Author(s):  
T.J.J. van den Boom ◽  
B. De Schutter
2019 ◽  
Vol 30 (1) ◽  
pp. 25-54 ◽  
Author(s):  
Bart De Schutter ◽  
Ton van den Boom ◽  
Jia Xu ◽  
Samira S. Farahani

AbstractThe objective of this paper is to provide a concise introduction to the max-plus algebra and to max-plus linear discrete-event systems. We present the basic concepts of the max-plus algebra and explain how it can be used to model a specific class of discrete-event systems with synchronization but no concurrency. Such systems are called max-plus linear discrete-event systems because they can be described by a model that is “linear” in the max-plus algebra. We discuss some key properties of the max-plus algebra and indicate how these properties can be used to analyze the behavior of max-plus linear discrete-event systems. Next, some control approaches for max-plus linear discrete-event systems, including residuation-based control and model predictive control, are presented briefly. Finally, we discuss some extensions of the max-plus algebra and of max-plus linear systems.


2020 ◽  
Vol 10 (15) ◽  
pp. 5027 ◽  
Author(s):  
Erik Kučera ◽  
Oto Haffner ◽  
Peter Drahoš ◽  
Ján Cigánek ◽  
Roman Leskovský  ◽  
...  

For the development of modern complex production processes in Industry 4.0, it is appropriate to effectively use advanced mathematical models based on Petri nets. Due to their versatility in modeling discrete-event systems, Petri nets are an important support in creating new platforms for digitized production systems. The main aim of the proposed article is to design a new software tool for modeling and control of discrete-event and hybrid systems using Arduino and similar microcontrollers. To accomplish these tasks, a new tool called PN2ARDUINO based on Petri nets is proposed able to communicate with the microcontroller. Communication with the microcontroller is based on the modified Firmata protocol hence, the control algorithm can be implemented on all microcontrollers that support this type of protocol. The developed software tool was successfully verified in control of laboratory systems. In addition, it can be used for education and research purposes as it offers a graphical environment for designing control algorithms for hybrid and mainly discrete-event systems. The proposed software tool can improve education and practice in cyber-physical systems (Industry 4.0).


Sign in / Sign up

Export Citation Format

Share Document