Guaranteed Closed Loop Precision in Multiple Model Based Control

2001 ◽  
Vol 34 (14) ◽  
pp. 139-144 ◽  
Author(s):  
Josè Diez ◽  
Fabio Previdi
2012 ◽  
Vol 45 (30) ◽  
pp. 482-489 ◽  
Author(s):  
Dariusz Cieslar ◽  
Alex Darlington ◽  
Keith Glover ◽  
Nick Collings

Materials ◽  
2005 ◽  
Author(s):  
Ajit R. Nalla ◽  
James L. Glancey

To improve process controllability during VARTM, a new resin injection line was designed and tested. The injection line, which consists of multiple segments each independently operated, allows for the control of resin flow to different locations within the mold. Simulation of different injection line configurations for various mold geometries is studied. Performance of a prototype line is quantified with a laboratory size mold used to demonstrate the potential value and benefits of this approach. Specific performance metrics, including resin flow front controllability, total injection time and void formation are used to compare this new approach to conventional VARTM injection methods. Computer-based closed loop controller strategies are designed that use point sensor feedback of resin location. In addition, an adaptive control algorithm that uses a finite element model to provide real-time updates of the injection line configuration is presented. Experimental validation of two different control strategies is presented, and demonstrates that real-time, model-based control is possible in VARTM.


Sign in / Sign up

Export Citation Format

Share Document