injection line
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 14)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Prashant Unnikrishnan Nair

In real-world water injection applications, an in-line injection facilitates a pressure differential that boosts the current flow. A pressure differential created by the injection of a pressurized flow into the mainline of flow is derived from the momentum transfer equation. Heat loss is disregarded, and such empirical equations provide a ballpark value to these pressure differentials during the injection. In industrial applications, injection of the fluid is done on the surface, due to weld and other constraints where losses due to friction and eddy current formation are imminent. On the other hand, penetration injection provides a far more augmented pressure differential that has a polynomial impact based on the mainline flow rate and the injection flow rate. This paper aims to derive an accurate representation of the pressure differential values obtained from a penetration injection through experimentation and compare it against a surface injection or empirical calculation. The paper concludes by indicating that the penetration injection augments the pressure differential with a new empirical formula for the derived pressure differential as a polynomial equation for this apparatus and can be extended across different sizes of the mainline and injection line diameters. This work provides a precise formula that can be used to derive pressure differential and estimate the flow and pressure rates. The formula also provides a platform for further utility in the fracturing operations where fracture flow from the well upstream presents multiple injection fractures to the mainline through fracture pores.


2021 ◽  
Vol 13 (22) ◽  
pp. 12692
Author(s):  
Alexandre L. N. Vieira ◽  
Raul D. S. G. Campilho ◽  
Francisco J. G. Silva ◽  
Luís P. Ferreira

Thermoplastic injection is currently employed in different industrial fields. This process has significantly evolved over the years, and injection machine manufacturers are continuously forced to innovate, to improve the energetic efficiency, aiming to reduce costs, improve competitiveness, and promote environmental sustainability. This work focuses on the development of a novel, profitable, and environmentally friendly plastic over-injection equipment of small metallic parts for the automotive industry, to be applied in a bowden cable production line, to cover the zamak terminations with plastic, or produce terminations entirely made of plastic. The work is based on an over-sized existing solution. The operating parameters required for the work are quantified, and all machine parts are designed separately to achieve the required functionality. Known approaches are finally used to perform the cost analysis, calculate the return on investment (ROI), and energetic efficiency, to substantiate the replacement of the current solution. The new equipment was able to increase the energetic efficiency of the current assembly line while keeping the required injection rates. An efficient and sustainable solution was presented, with a ROI of 1.2 years over the current solution. The proposed design is also applicable to different automated production lines that require this technology. Nowadays, this concept can be extended to all fields of industry that employ injection molding in their processes, enabling to integrate new manufacturing systems, and increasing energetic efficiency while reducing production costs.


Author(s):  
Mohd Yusoff Mohd Haris ◽  
Khairul Dahri Mohd Aris ◽  
Muzafar Zulkifli ◽  
Tajul Adli Abdul Razak ◽  
Nurul Zuhairah Mahmud Zuhudi

The vacuum infusion method is emerging to produce composite parts, especially thin wall structure aircraft radome. Ansys Fluent is used in the optimization phase for mould filling analysis on aircraft radome part. The permeability fibre is referring to the physical property of the fibre reinforcement to allow fluids to permeate it, thus it is correlated with the viscosity of the resin used. In this work, flax fibre, glass fibre and low viscosity epoxy resin are used to determine the permeability value of flax fibre, glass fibre and hybrid without using a flow medium. In-plane experiment on reinforcement fibre permeability is conducted and all reinforcement fibre have similar fibre architecture and weight. The development of a digital model from a top partial aircraft radome is obtained through a 3D scanner and CATIA. Ansys Fluent is used to optimize the location of the injection line and air vent for the epoxy. The Ansys Fluent analysis model is validated through the in-plane experiment filling time result for a flat model. Based on the simulation analysis, the location of the injection line is placed at the perimeter and the air vent at the centre. The filling time from the simulation for the flax fibre and hybrid fibre was estimated around 10 to 11 minutes. However, the filling time for glass fibre is approximate 2 hours which is longer than epoxy gel time. Furthermore, this method can be used in mould filing scenarios of thin wall structure within gel time of the resin.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wenguang Yu ◽  
Peng Guo ◽  
Qi Wang ◽  
Guofeng Guan ◽  
Yujuan Huang ◽  
...  

AbstractIn this paper, we model the insurance company’s surplus by a compound Poisson risk model, where the surplus process can only be observed at random observation times. It is assumed that the insurer observes its surplus level periodically to decide on dividend payments and capital injection at the interobservation time having an $\operatorname{Erlang}(n)$ Erlang ( n ) distribution. If the observed surplus level is greater than zero but less than injection line $b_{1} > 0$ b 1 > 0 , the shareholders should immediately inject a certain amount of capital to bring the surplus level back to the injection line $b_{1}$ b 1 . If the observed surplus level is larger than dividend line $b_{2}$ b 2 ($b_{2} > b_{1}$ b 2 > b 1 ), any excess of the surplus over $b_{2}$ b 2 is immediately paid out as dividends to the shareholders of the company. Ruin is declared when the observed surplus level is negative. We derive the explicit expressions of the Gerber–Shiu function, the expected discounted capital injection, and the expected discounted dividend payments. Numerical illustrations are also given to analyze the effect of random observation times on actuarial quantities.


2020 ◽  
Vol 206 (9) ◽  
pp. 1421-1435 ◽  
Author(s):  
Jin-Hwa Yang ◽  
Hwang Bae ◽  
Sung-Uk Ryu ◽  
Byong Guk Jeon ◽  
Sung-Jae Yi ◽  
...  

The article presents an assessment of the dependence of the fuel supply on the wave phenomena in the highpressure line that occur during multiple injection. After injection, fluctuations in the fuel pressure in the fuel injection line occur, which significantly affect the cycle delivery and injection behavior of subsequent multiple injections. A promising design of a fuel rail is presented and a method for controlling wave phenomena in a highpressure line of a Common Rail is proposed. Keywords wave phenomena; multiple injection; Common Rail; electrohydraulic injector; fuel rail


Sign in / Sign up

Export Citation Format

Share Document