scholarly journals Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations

2002 ◽  
Vol 29 (2) ◽  
pp. 1971-1978 ◽  
Author(s):  
H. Pitsch
Author(s):  
M. P. Sitte ◽  
C. Turquand d’Auzay ◽  
A. Giusti ◽  
E. Mastorakos ◽  
N. Chakraborty

Abstract The modelling of scalar dissipation rate in conditional methods for large-eddy simulations is investigated based on a priori direct numerical simulation analysis using a dataset representing an igniting non-premixed planar jet flame. The main objective is to provide a comprehensive assessment of models typically used for large-eddy simulations of non-premixed turbulent flames with the Conditional Moment Closure combustion model. The linear relaxation model gives a good estimate of the Favre-filtered scalar dissipation rate throughout the ignition with a value of the related constant close to the one deduced from theoretical arguments. Such value of the constant is one order of magnitude higher than typical values used in Reynolds-averaged approaches. The amplitude mapping closure model provides a satisfactory estimate of the conditionally filtered scalar dissipation rate even in flows characterised by shear driven turbulence and strong density variation.


Sign in / Sign up

Export Citation Format

Share Document