162 PGC-1alpha correlates with cardiac and skeletal muscle oxidative capacity in heart failure

2003 ◽  
Vol 2 (1) ◽  
pp. 29-30
Author(s):  
A GARNIER ◽  
D FORTIN ◽  
C DELOMENIE ◽  
I MOMKEN ◽  
V VEKSLER ◽  
...  
2015 ◽  
Vol 3 (4) ◽  
pp. e12353 ◽  
Author(s):  
William M. Southern ◽  
Terence E. Ryan ◽  
Kirsten Kepple ◽  
Jonathan R. Murrow ◽  
Kent R. Nilsson ◽  
...  

2015 ◽  
Vol 119 (6) ◽  
pp. 734-738 ◽  
Author(s):  
Satyam Sarma ◽  
Benjamin D. Levine

Patients with heart failure with preserved ejection fraction (HFpEF) have similar degrees of exercise intolerance and dyspnea as patients with heart failure with reduced EF (HFrEF). The underlying pathophysiology leading to impaired exertional ability in the HFpEF syndrome is not completely understood, and a growing body of evidence suggests “peripheral,” i.e., noncardiac, factors may play an important role. Changes in skeletal muscle function (decreased muscle mass, capillary density, mitochondrial volume, and phosphorylative capacity) are common findings in HFrEF. While cardiac failure and decreased cardiac reserve account for a large proportion of the decline in oxygen consumption in HFrEF, impaired oxygen diffusion and decreased skeletal muscle oxidative capacity can also hinder aerobic performance, functional capacity and oxygen consumption (V̇o2) kinetics. The impact of skeletal muscle dysfunction and abnormal oxidative capacity may be even more pronounced in HFpEF, a disease predominantly affecting the elderly and women, two demographic groups with a high prevalence of sarcopenia. In this review, we 1) describe the basic concepts of skeletal muscle oxygen kinetics and 2) evaluate evidence suggesting limitations in aerobic performance and functional capacity in HFpEF subjects may, in part, be due to alterations in skeletal muscle oxygen delivery and utilization. Improving oxygen kinetics with specific training regimens may improve exercise efficiency and reduce the tremendous burden imposed by skeletal muscle upon the cardiovascular system.


2010 ◽  
Vol 11 (5) ◽  
pp. 412-426 ◽  
Author(s):  
Anthony E. Civitarese ◽  
Paul S. MacLean ◽  
Stacy Carling ◽  
Lyndal Kerr-Bayles ◽  
Ryan P. McMillan ◽  
...  

2001 ◽  
Vol 38 (4) ◽  
pp. 947-954 ◽  
Author(s):  
Bertrand Mettauer ◽  
Joffrey Zoll ◽  
Hervé Sanchez ◽  
Eliane Lampert ◽  
Florence Ribera ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85636 ◽  
Author(s):  
Ligen Lin ◽  
Keyun Chen ◽  
Waed Abdel Khalek ◽  
Jack Lee Ward ◽  
Henry Yang ◽  
...  

2020 ◽  
Vol 8 (16) ◽  
Author(s):  
Sophie L. Wardle ◽  
Lindsay S. Macnaughton ◽  
Chris McGlory ◽  
Oliver C. Witard ◽  
James R. Dick ◽  
...  

Metabolism ◽  
2020 ◽  
Vol 103 ◽  
pp. 154025 ◽  
Author(s):  
Nadia M.L. Amorim ◽  
Anthony Kee ◽  
Adelle C.F. Coster ◽  
Christine Lucas ◽  
Sarah Bould ◽  
...  

2004 ◽  
Vol 34 (4) ◽  
pp. 221-229 ◽  
Author(s):  
David W Russ ◽  
Jane A Kent-Braun

2007 ◽  
Vol 293 (1) ◽  
pp. E31-E41 ◽  
Author(s):  
Robert C. Noland ◽  
John P. Thyfault ◽  
Sarah T. Henes ◽  
Brian R. Whitfield ◽  
Tracey L. Woodlief ◽  
...  

Elevated oxidative capacity, such as occurs via endurance exercise training, is believed to protect against the development of obesity and diabetes. Rats bred both for low (LCR)- and high (HCR)-capacity endurance running provide a genetic model with inherent differences in aerobic capacity that allows for the testing of this supposition without the confounding effects of a training stimulus. The purpose of this investigation was to determine the effects of a high-fat diet (HFD) on weight gain patterns, insulin sensitivity, and fatty acid oxidative capacity in LCR and HCR male rats in the untrained state. Results indicate chow-fed LCR rats were heavier, hypertriglyceridemic, less insulin sensitive, and had lower skeletal muscle oxidative capacity compared with HCR rats. Upon exposure to an HFD, LCR rats gained more weight and fat mass, and their insulin resistant condition was exacerbated, despite consuming similar amounts of metabolizable energy as chow-fed controls. These metabolic variables remained unaltered in HCR rats. The HFD increased skeletal muscle oxidative capacity similarly in both strains, whereas hepatic oxidative capacity was diminished only in LCR rats. These results suggest that LCR rats are predisposed to obesity and that expansion of skeletal muscle oxidative capacity does not prevent excess weight gain or the exacerbation of insulin resistance on an HFD. Elevated basal skeletal muscle oxidative capacity and the ability to preserve liver oxidative capacity may protect HCR rats from HFD-induced obesity and insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document