rhomboid protease
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 22)

H-INDEX

31
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
María Inés Marchesini ◽  
Ansgar Poetsch ◽  
Leticia Soledad Guidolín ◽  
Diego J. Comerci

Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.


Author(s):  
Chi Zhang ◽  
Lu Gao ◽  
Yiran Ren ◽  
Huiyu Gu ◽  
Yuanwei Zhang ◽  
...  

In fungal pathogens, the transcription factor SrbA (a sterol regulatory element-binding protein, SREBP) and CBC (CCAAT binding complex) have been reported to regulate azole resistance by competitively binding the TR34 region (34 mer) in the promoter of the drug target gene, erg11A. However, current knowledge about how the SrbA and CBC coordinately mediate erg11A expression remains limited. In this study, we uncovered a novel relationship between HapB (a subunit of CBC) and SrbA in which deletion of hapB significantly prolongs the nuclear retention of SrbA by increasing its expression and cleavage under azole treatment conditions, thereby enhancing Erg11A expression for drug resistance. Furthermore, we verified that loss of HapB significantly induces the expression of the rhomboid protease RbdB, Dsc ubiquitin E3 ligase complex, and signal peptide peptidase SppA, which are required for the cleavage of SrbA, suggesting that HapB acts as a repressor for these genes which contribute to the activation of SrbA by proteolytic cleavage. Together, our study reveals that CBC functions not only to compete with SrbA for binding to erg11A promoter region but also to affect SrbA expression, cleavage, and translocation to nuclei for the function, which ultimately regulate Erg11A expression and azole resistance.


2021 ◽  
Author(s):  
Song-iee Han ◽  
Masanori Nakakuki ◽  
Yoshimi Nakagawa ◽  
Yunong Wang ◽  
Masaya Araki ◽  
...  

The ER-embedded transcription factors, sterol-regulatory element-binding proteins (SREBPs), master regulators of lipid biosynthesis, are transported to Golgi for proteolytic activation to tune cellular cholesterol levels and regulate lipogenesis. However, mechanisms by which the cell responds to the levels of saturated or unsaturated fatty acids remain underexplored. Here we show that RHBDL4/RHBDD1, a rhomboid family protease, directly cleaves SREBP-1c at ER. The p97/VCP, AAA-ATPase complex then acts as an auxiliary segregase to extract the remaining ER-embedded fragment of SREBP-1c. Importantly, the enzymatic activity of RHBDL4 is enhanced by saturated fatty acids (SFAs), but inhibited by polyunsaturated fatty acids (PUFAs). Genetic deletion of RHBDL4 in mice fed on a Western diet enriched in SFAs and cholesterol prevented SREBP-1c from inducing genes for lipogenesis, particularly for synthesis and incorporation of PUFAs, and secretion of lipoproteins. The RHBDL4-SREBP-1c pathway reveals a regulatory system for monitoring fatty acid composition and maintaining cellular lipid homeostasis.


Author(s):  
William H. Parsons ◽  
Nicholas T. Rutland ◽  
Jennifer A. Crainic ◽  
Joaquin M. Cardozo ◽  
Alyssa S. Chow ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Viorica Liebe Lastun ◽  
Matthew Freeman

In metazoans, the architecture of the endoplasmic reticulum (ER) differs between cell types, and undergoes major changes through the cell cycle and according to physiological needs. Although much is known about how the different ER morphologies are generated and maintained, especially the ER tubules, how context dependent changes in ER shape and distribution are regulated and the factors involved are less characterized. Here, we show that RHBDL4, an ER-resident rhomboid protease, modulates the shape and distribution of the ER, especially under conditions that require rapid changes in the ER sheet distribution, including ER stress. RHBDL4 interacts with CLIMP-63, a protein involved in ER sheet stabilisation, and with the cytoskeleton. Mice lacking RHBDL4 are sensitive to ER stress and develop liver steatosis, a phenotype associated with unresolved ER stress. Our data introduce a new physiological role of RHBDL4 and also imply that this function does not require its enzymatic activity.


2021 ◽  
Author(s):  
Anahita Nejatfard ◽  
Nicholas Wauer ◽  
Satarupa Bhaduri ◽  
Adam Conn ◽  
Saroj Gourkanti ◽  
...  

Nearly one-third of proteins are initially targeted to the endoplasmic reticulum (ER) membrane where they are correctly folded, assembled, and then delivered to their final cellular destinations. In order to prevent the accumulation of misfolded membrane proteins, ER associated degradation (ERAD) moves these clients from the ER membrane to the cytosol; a process known as retrotranslocation. Our recent work in S. cerevisiae has revealed a derlin rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated ERAD membrane substrates. In this study we sought to understand the mechanism associated with Dfm1's actions and found that Dfm1's conserved rhomboid residues are critical for membrane protein retrotranslocation. Specifically, we identified several retrotranslocation-deficient Loop 1 mutants that display impaired binding to membrane substrates. Furthermore, Dfm1 has retained the lipid thinning functions of its rhomboid protease predecessors to facilitate in the removal of ER membrane substrates. We find this substrate engagement and lipid thinning feature is conserved in its human homolog, Derlin-1. Utilizing interaction studies and molecular dynamics simulations, this work reveals that rhomboid pseudoprotease derlins employ novel mechanisms of substrate engagement and lipid thinning for catalyzing extraction of multi-spanning membrane substrates.


2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Lydia Koch ◽  
Birte Kespohl ◽  
Maria Agthe ◽  
Tim Schumertl ◽  
Stefan Düsterhöft ◽  
...  

2021 ◽  
pp. 100383
Author(s):  
Laine Lysyk ◽  
Raelynn Brassard ◽  
Elena Arutyunova ◽  
Verena Siebert ◽  
Zhenze Jiang ◽  
...  

2021 ◽  
Author(s):  
Claudia Bohg ◽  
Carl Öster ◽  
Tillmann Utesch ◽  
Susanne Bischoff ◽  
Sascha Lange ◽  
...  

Intramembrane proteolysis plays a fundamental role in many biological and pathological processes. Intramembrane proteases thus represent promising pharmacological targets, but few selective inhibitors have been identified. This is in contrast...


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4196-4199
Author(s):  
Tim Van Kersavond ◽  
Raphael Konopatzki ◽  
Merel A. T. van der Plassche ◽  
Jian Yang ◽  
Steven H. L. Verhelst

Rhomboid intramembrane serine proteases are involved in various biological processes. A solid phase synthesis of internal α-ketoamides reported here shows that primed site elements are crucial for rhomboid protease inhibition.


Sign in / Sign up

Export Citation Format

Share Document