High field single subject brain mapping of pelvic floor motor control. A 7-Tesla fMRI study

2019 ◽  
Vol 18 (1) ◽  
pp. e9-e10
Author(s):  
I.M. Groenendijk ◽  
S. Luijten ◽  
W. Van Der Zwaag ◽  
J.C. Holstege ◽  
J. Scheepe ◽  
...  
2005 ◽  
Vol 4 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Kosuke ITOH ◽  
Yukihiko FUJII ◽  
Ingrid L. KWEE ◽  
Tsutomu NAKADA

2019 ◽  
Author(s):  
Adelina Staicu ◽  
Camelia Albu ◽  
Roxana Popa‐Stanila ◽  
Liviu Chiriac ◽  
Dan Boitor‐Borza ◽  
...  

2019 ◽  
Vol 85 (10) ◽  
pp. S299-S300
Author(s):  
Laurel Morris ◽  
Aaron Tan ◽  
Derek Smith ◽  
Mora Grehl ◽  
Kuang-Han Huang ◽  
...  

Author(s):  
JC Lau ◽  
J DeKraker ◽  
KW MacDougall ◽  
H Joswig ◽  
AG Parrent ◽  
...  

Background: The hippocampus can be divided longitudinally into the head, body, and tail; and unfolded medial-to-laterally into the subiculum, cornu ammonis (CA) sectors, and the dentate gyrus. Ultra-high field (≥ 7 Tesla; 7T) magnetic resonance imaging (MRI) enables submillimetric visualization of these hippocampal substructures which could be valuable for surgical targeting. Here, we assess the feasibility of using 7T MRI in conjunction with a novel computational unfolding method for image-based stereotactic targeting of hippocampal substructures. Methods: 53 patients with drug-resistant epilepsy were identified undergoing first-time implantation of the hippocampus. An image processing pipeline was created for computationally transforming post-operative electrode contact locations into our hippocampal coordinate system. Results: Of 178 implanted hippocampal electrodes (88 left; 49.4%), 25 (14.0%) were predominantly in the subiculum, 85 (47.8%) were in CA1, 23 (12.9%) were in CA2, 18 (10.1%) were in CA3/CA4, and 27 (15.2%) were in dentate gyrus. Along the longitudinal axis, hippocampal electrodes were most commonly implanted in the body (92; 51.7%) followed by the head (86; 48.3%). Conclusions: 7T MRI enables high-resolution anatomical imaging on the submillimeter scale in in vivo subjects. Here, we demonstrate the utility of 7T imaging for identifying the relative location of SEEG electrode implantations within hippocampal substructures for the invasive investigation of epilepsy.


NeuroImage ◽  
2020 ◽  
Vol 221 ◽  
pp. 117200 ◽  
Author(s):  
Anneke Alkemade ◽  
Martijn J Mulder ◽  
Josephine M Groot ◽  
Bethany R Isaacs ◽  
Nikita van Berendonk ◽  
...  

Motor Control ◽  
2011 ◽  
Vol 15 (1) ◽  
pp. 34-51 ◽  
Author(s):  
Bettina Brendel ◽  
Michael Erb ◽  
Axel Riecker ◽  
Wolfgang Grodd ◽  
Hermann Ackermann ◽  
...  

The present study combines functional magnetic resonance imaging (fMRI) and reaction time (RT) measurements to further elucidate the influence of syllable frequency and complexity on speech motor control processes, i.e., overt reading of pseudowords. Tying in with a recent fMRI-study of our group we focused on the concept of a mental syllabary housing syllable sized ready-made motor plans for high- (HF), but not low-frequency (LF) syllables. The RT-analysis disclosed a frequency effect weakened by a simultaneous complexity effect for HF-syllables. In contrast, the fMRI data revealed no effect of syllable frequency, but point to an impact of syllable structure: Compared with CV-items, syllables with a complex onset (CCV) yielded higher hemodynamic activation in motor “execution” areas (left sensorimotor cortex, right inferior cerebellum), which is at least partially compatible with our previous study. We discuss the role of the syllable in speech motor control.


Sign in / Sign up

Export Citation Format

Share Document