Relating Eye Dominance to Neurochemistry in the Human Visual Cortex Using Ultra High Field 7-Tesla MR Spectroscopy

Author(s):  
I. Betina Ip ◽  
Claudia Lunghi ◽  
Uzay E. Emir ◽  
Andrew J. Parker ◽  
Holly Bridge
2019 ◽  
Vol 19 (10) ◽  
pp. 186b
Author(s):  
Ke Jia ◽  
Elisa Zamboni ◽  
Nuno Reis Goncalves ◽  
Catarina Rua ◽  
Valentin Kemper ◽  
...  

2020 ◽  
Author(s):  
I. Betina Ip ◽  
Claudia Lunghi ◽  
Uzay E. Emir ◽  
Andrew J. Parker ◽  
Holly Bridge

ABSTRACTOur binocular world is seamlessly assembled from two retinal images that remain segregated until the cerebral cortex. Despite the coherence of this input, there is often an imbalance between the strength of these connections in the brain. ‘Eye dominance’ provides a measure of the perceptual dominance of one eye over the other. Theoretical models suggest that eye dominance is related to reciprocal inhibition between monocular units in the primary visual cortex, the first location where the binocular input is combined. As the specific inhibitory interactions in the binocular visual system critically depend on the presence of visual input, we sought to test the role of inhibition by measuring the concentrations of inhibitory (GABA) neurotransmitters during monocular visual stimulation of the dominant and the non-dominant eye. GABA-levels were acquired in V1 using a combined functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) sequence on a 7-Tesla MRI scanner. Individuals with stronger eye dominance had a greater difference in GABAergic inhibition between the eyes. This relationship was present only when the visual system was actively processing sensory input and was not present at rest. We provide the first evidence that imbalances in GABA levels during ongoing sensory processing are related to eye dominance in the human visual cortex. This provides strong support to the view that intracortical inhibition underlies normal eye dominance.SIGNIFICANCE STATEMENTWhat we see is shaped by excitation and inhibition in our brain. We investigated how eye dominance, the perceptual preference of one eye’s input over the other, is related to levels of inhibitory neurotransmitter GABA during monocular visual stimulation. GABAergic inhibition is related to eye dominance, but only when the visual system is actively processing sensory input. This provides key support for the view that imbalances in visual competition that are observed in the normal visual system arise from an inability of GABA signalling to suppress the stronger sensory representation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. Betina Ip ◽  
Uzay E. Emir ◽  
Claudia Lunghi ◽  
Andrew J. Parker ◽  
Holly Bridge

AbstractBinocular vision is created by fusing the separate inputs arriving from the left and right eyes. ‘Eye dominance’ provides a measure of the perceptual dominance of one eye over the other. Theoretical models suggest that eye dominance is related to reciprocal inhibition between monocular units in the primary visual cortex, the first location where the binocular input is combined. As the specific inhibitory interactions in the binocular visual system critically depend on the presence of visual input, we sought to test the role of inhibition by measuring the inhibitory neurotransmitter GABA during monocular visual stimulation of the dominant and the non-dominant eye. GABA levels were measured in a single volume of interest in the early visual cortex, including V1 from both hemispheres, using a combined functional magnetic resonance imaging and magnetic resonance spectroscopy (combined fMRI-MRS) sequence on a 7-Tesla MRI scanner. Individuals with stronger eye dominance had a greater difference in GABAergic inhibition between the eyes. This relationship was present only when the visual system was actively processing sensory input and was not present at rest. We provide the first evidence that imbalances in GABA levels during ongoing sensory processing are related to eye dominance in the human visual cortex. Our finding supports the view that intracortical inhibition underlies normal eye dominance.


2019 ◽  
Author(s):  
Ingo Marquardt ◽  
Peter De Weerd ◽  
Marian Schneider ◽  
Omer Faruk Gulban ◽  
Dimo Ivanov ◽  
...  

AbstractHuman visual surface perception has neural correlates in early visual cortex, but the extent to which feedback contributes to this activity is not well known. Feedback projections preferentially enter superficial and deep anatomical layers, while avoiding the middle layer, which provides a hypothesis for the cortical depth distribution of fMRI activity related to feedback in early visual cortex. Here, we presented human participants uniform surfaces on a dark, textured background. The grey surface in the left hemifield was either perceived as static or moving based on a manipulation in the right hemifield. Physically, the surface was identical in the left visual hemifield, so any difference in percept likely was related to feedback. Using ultra-high field fMRI, we report the first evidence for a depth distribution of activation in line with feedback during the (illusory) perception of surface motion. Our results fit with a signal re-entering in superficial depths of V1, followed by a feedforward sweep of the re-entered information through V2 and V3, as suggested by activity centred in the middle-depth levels of the latter areas. This positive modulation of the BOLD signal due to illusory surface motion was on top of a strong negative BOLD response in the cortical representation of the surface stimuli, which depended on the presence of texture in the background. Hence, the magnitude and sign of the BOLD response to the surface strongly depended on background properties, and was additionally modulated by the presence or absence of illusory motion perception in a manner compatible with feedback. In summary, the present study demonstrates the potential of depth resolved fMRI in tackling biomechanical questions on perception that so far were only within reach of invasive animal experimentation.


2019 ◽  
Vol 85 (10) ◽  
pp. S299-S300
Author(s):  
Laurel Morris ◽  
Aaron Tan ◽  
Derek Smith ◽  
Mora Grehl ◽  
Kuang-Han Huang ◽  
...  

Author(s):  
JC Lau ◽  
J DeKraker ◽  
KW MacDougall ◽  
H Joswig ◽  
AG Parrent ◽  
...  

Background: The hippocampus can be divided longitudinally into the head, body, and tail; and unfolded medial-to-laterally into the subiculum, cornu ammonis (CA) sectors, and the dentate gyrus. Ultra-high field (≥ 7 Tesla; 7T) magnetic resonance imaging (MRI) enables submillimetric visualization of these hippocampal substructures which could be valuable for surgical targeting. Here, we assess the feasibility of using 7T MRI in conjunction with a novel computational unfolding method for image-based stereotactic targeting of hippocampal substructures. Methods: 53 patients with drug-resistant epilepsy were identified undergoing first-time implantation of the hippocampus. An image processing pipeline was created for computationally transforming post-operative electrode contact locations into our hippocampal coordinate system. Results: Of 178 implanted hippocampal electrodes (88 left; 49.4%), 25 (14.0%) were predominantly in the subiculum, 85 (47.8%) were in CA1, 23 (12.9%) were in CA2, 18 (10.1%) were in CA3/CA4, and 27 (15.2%) were in dentate gyrus. Along the longitudinal axis, hippocampal electrodes were most commonly implanted in the body (92; 51.7%) followed by the head (86; 48.3%). Conclusions: 7T MRI enables high-resolution anatomical imaging on the submillimeter scale in in vivo subjects. Here, we demonstrate the utility of 7T imaging for identifying the relative location of SEEG electrode implantations within hippocampal substructures for the invasive investigation of epilepsy.


NeuroImage ◽  
2020 ◽  
Vol 221 ◽  
pp. 117200 ◽  
Author(s):  
Anneke Alkemade ◽  
Martijn J Mulder ◽  
Josephine M Groot ◽  
Bethany R Isaacs ◽  
Nikita van Berendonk ◽  
...  

2015 ◽  
Vol 1 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Nicolai Spicher ◽  
Stefan Maderwald ◽  
Mark E. Ladd ◽  
Markus Kukuk

AbstractVideos of the human skin contain subtle color variations associated with the blood volume pulse. This remote photoplethysmography signal can be used for heart rate monitoring and represents an alternative to signals obtained from contact-based hardware. We developed an algorithm that estimates the heart rate in real-time from photoplethysmography signals and evaluate its performance in the context of ultra-high-field magnetic resonance imaging. We compare its accuracy to heart rate values estimated from electrocardiography and finger pulse oximetry triggers, obtained from MR vendor-provided hardware. For eight subjects, two experiments are conducted with the patient table outside and inside a 7 Tesla scanner. During both 5 min setups, heart rates from the algorithm and contact-based methods are stored. Their comparison suggests technical feasibility of the contactless method but that it is inferior in accuracy compared to contact-based hardware and that low heart rates (≤50 beats per minute) and adequate illumination are major challenges for practical feasibility.


Data in Brief ◽  
2017 ◽  
Vol 13 ◽  
pp. 219-222
Author(s):  
Ayan Sengupta ◽  
Renat Yakupov ◽  
Oliver Speck ◽  
Stefan Pollmann ◽  
Michael Hanke

Sign in / Sign up

Export Citation Format

Share Document