2001 ◽  
Vol 73 (6) ◽  
pp. 626-627
Author(s):  
A. Friedl ◽  
P. Schausberger ◽  
G. Schuster ◽  
K. Weigl ◽  
Ch. Aichernig

2018 ◽  
Vol 9 (12) ◽  
pp. 2433-2445 ◽  
Author(s):  
M. A. Kougioumtzis ◽  
A. Marianou ◽  
K. Atsonios ◽  
C. Michailof ◽  
N. Nikolopoulos ◽  
...  

Author(s):  
E.W. Scheckler ◽  
A.S. Wong ◽  
R.H. Wang ◽  
G. Chin ◽  
J.R. Camagna ◽  
...  

2020 ◽  
Vol 106 (7-8) ◽  
pp. 2779-2791 ◽  
Author(s):  
Sijie Cai ◽  
Bin Yao ◽  
Wei Feng ◽  
Zhiqin Cai ◽  
Binqiang Chen ◽  
...  

2021 ◽  
Vol 33 ◽  
pp. 473-487
Author(s):  
C.L. Alves ◽  
A. De Noni Jr ◽  
R. Janssen ◽  
D. Hotza ◽  
J.B. Rodrigues Neto ◽  
...  

2008 ◽  
Vol 14 (12) ◽  
pp. 1789-1796 ◽  
Author(s):  
D. Kauzlarić ◽  
J. Lienemann ◽  
L. Pastewka ◽  
A. Greiner ◽  
J. G. Korvink

Author(s):  
Christine Schoene ◽  
Ralph Stelzer ◽  
Ulf Schmidt ◽  
Dietmar Suesse

The paper elucidates how to connect forming process simulation with innovative measurement- and analysis equipment thereby taking into account the machine influences. Reverse Engineering use 3D-Scanning data of sheet metal forming dies. Following this paradigm, the models simulation relies on are refined, and spotting of forming dies is subjected to a scientific analysis. That means, that with Reverse Engineering, “extended process engineering” is verified at the real spotting procedure, the comparison of simulation- and measuring results is used to evaluate how close the investigated models are to reality, extending the optimisation algorithms used for springback compensation to die spotting, the modification of the die topology will be carried out automatically thanks to new software functions.


Sign in / Sign up

Export Citation Format

Share Document