lignocellulosic feedstocks
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 54)

H-INDEX

29
(FIVE YEARS 8)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7877
Author(s):  
Maja Ivanovski ◽  
Aleksandra Petrovic ◽  
Irena Ban ◽  
Darko Goricanec ◽  
Danijela Urbancl

The torrefaction process upgrades biomass characteristics and produces solid biofuels that are coal-like in their properties. Kinetics analysis is important for the determination of the appropriate torrefaction condition to obtain the best utilization possible. In this study, the kinetics (Friedman (FR) and Kissinger–Akahira–Sunose (KAS) isoconversional methods of two final products of lignocellulosic feedstocks, miscanthus (Miscanthus x giganteus) and hops waste (Humulus Lupulus), were studied under different heating rates (10, 15, and 20 °C/min) using thermogravimetry (TGA) under air atmosphere as the main method to investigate. The results of proximate and ultimate analysis showed an increase in HHV values, carbon content, and fixed carbon content, followed by a decrease in the VM and O/C ratios for both torrefied biomasses, respectively. FTIR spectra confirmed the chemical changes during the torrefaction process, and they corresponded to the TGA results. The average Eα for torrefied miscanthus increased with the conversion degree for both models (25–254 kJ/mol for FR and 47–239 kJ/mol for the KAS model). The same trend was noticed for the torrefied hops waste samples; the values were within the range of 14–224 kJ/mol and 60–221 kJ/mol for the FR and KAS models, respectively. Overall, the Ea values for the torrefied biomass were much higher than for raw biomass, which was due to the different compositions of the torrefied material. Therefore, it can be concluded that both torrefied products can be used as a potential biofuel source.


2021 ◽  
Author(s):  
Filippo Brienza ◽  
Korneel Van Aelst ◽  
François Devred ◽  
Delphine Magnin ◽  
Maxim Tschulkow ◽  
...  

The development of biomass pretreatment approaches that, next to (hemi)cellulose valorization, aim at the conversion of lignin to chemicals is essential for the long-term success of a biorefinery. Herein, we discuss a dithionite-assisted organosolv fractionation (DAOF) of lignocellulose in n-butanol and water to produce cellulosic pulp and mono-/oligo-aromatics. The present study frames the technicalities of this biorefinery process and relates them to the features of the obtained product streams. Via the extensive characterization of the solid pulp (by acid hydrolysis-HPLC, ATR-FTIR, XRD, SEM and enzymatic hydrolysis-HPLC), of lignin derivatives (by GPC, GC-MS/FID, 1H-13C HSQC NMR, and ICP-AES) and of carbohydrate derivatives (by HPLC) we comprehensively identify and quantify the different products of interest. These results were used for inspecting the economic feasibility of DAOF. The adoption of a dithionite loading of 16.7% w/wbiomass and of an equivolumetric mixture of n-butanol and water, which led to a high yield of monophenolics (~20%, based on acid insoluble lignin, for the treatment of birch sawdust), was identified as the most profitable process configuration. Furthermore, the treatment of various lignocellulosic feedstocks was explored, which showed that DAOF is particularly effective for processing hardwood and herbaceous biomass. Overall, this study provides a comprehensive view of the development of an effective dithionite-assisted organosolv fractionation method for the sustainable upgrading of lignocellulosic biomass.


2021 ◽  
Author(s):  
Zhiwei Song ◽  
Xuechen Wen ◽  
Tao Sheng

Abstract Decomposed the dense structure of lignocellulosic feedstocks and hydrolysis lignocellulose into monosaccharide were essential prerequisite for bio-energy production at this level. In this study, a cellulosic fungi Aspergillus fumigatus CLL was conducted to pretreated the corn stalks under high/low solid loading culture to enhanced the cellulase saccharification performance. The results indicated that A. fumigatus CLL decomposed the corn stalks effectively under high/low solid loading culture, what’s more, A. fumigatus CLL completed the T. reesei cellulase system and promoted the corn stalks saccharification performance. 25.2% lignin was degraded after A. fumigatus CLL treated just for two day under low solid loading culture with holocellulose loss less than 10%. Meanwhile, the β-glucosidase of A. fumigatus CLL complemented the incomplete cellulase system of T. reesei, the maximum saccharification ratio of sample saccharified by T. reesei cellulase combined A. fumigatus CLL was comparable with the sample saccharified by commercial cellulase. Compared with raw corn stalks, the saccharification ratio of pretreated sample increased 3.1-3.4 fold. These results demonstrated that A. fumigatus CLL can be used for pretreatment of lignocellulosic materials to enhanced the saccharification performance.


Author(s):  
Muhammad Afzal ◽  
Nargis Shaheen ◽  
Syed Aizaz Ali Shah ◽  
Attiya Iqbal ◽  
Michael E. Scharf ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1343
Author(s):  
Mpho S. Mafa ◽  
Brett I. Pletschke ◽  
Samkelo Malgas

Lignocellulose has economic potential as a bio-resource for the production of value-added products (VAPs) and biofuels. The commercialization of biofuels and VAPs requires efficient enzyme cocktail activities that can lower their costs. However, the basis of the synergism between enzymes that compose cellulolytic enzyme cocktails for depolymerizing lignocellulose is not understood. This review aims to address the degree of synergism (DS) thresholds between the cellulolytic enzymes and how this can be used in the formulation of effective cellulolytic enzyme cocktails. DS is a powerful tool that distinguishes between enzymes’ synergism and anti-synergism during the hydrolysis of biomass. It has been established that cellulases, or cellulases and lytic polysaccharide monooxygenases (LPMOs), always synergize during cellulose hydrolysis. However, recent evidence suggests that this is not always the case, as synergism depends on the specific mechanism of action of each enzyme in the combination. Additionally, expansins, nonenzymatic proteins responsible for loosening cell wall fibers, seem to also synergize with cellulases during biomass depolymerization. This review highlighted the following four key factors linked to DS: (1) a DS threshold at which the enzymes synergize and produce a higher product yield than their theoretical sum, (2) a DS threshold at which the enzymes display synergism, but not a higher product yield, (3) a DS threshold at which enzymes do not synergize, and (4) a DS threshold that displays anti-synergy. This review deconvolutes the DS concept for cellulolytic enzymes, to postulate an experimental design approach for achieving higher synergism and cellulose conversion yields.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 807
Author(s):  
Sevakumaran Vigneswari ◽  
Muhammad Shahrul Md Noor ◽  
Tan Suet May Amelia ◽  
Karthnee Balakrishnan ◽  
Azila Adnan ◽  
...  

Polyhydroxyalkanoates (PHA) are biodegradable polymers that are considered able to replace synthetic plastic because their biochemical characteristics are in some cases the same as other biodegradable polymers. However, due to the disadvantages of costly and non-renewable carbon sources, the production of PHA has been lower in the industrial sector against conventional plastics. At the same time, first-generation sugar-based cultivated feedstocks as substrates for PHA production threatens food security and considerably require other resources such as land and energy. Therefore, attempts have been made in pursuit of suitable sustainable and affordable sources of carbon to reduce production costs. Thus, in this review, we highlight utilising waste lignocellulosic feedstocks (LF) as a renewable and inexpensive carbon source to produce PHA. These waste feedstocks, second-generation plant lignocellulosic biomass, such as maize stoves, dedicated energy crops, rice straws, wood chips, are commonly available renewable biomass sources with a steady supply of about 150 billion tonnes per year of global yield. The generation of PHA from lignocellulose is still in its infancy, hence more screening of lignocellulosic materials and improvements in downstream processing and substrate pre-treatment are needed in the future to further advance the biopolymer sector.


Sign in / Sign up

Export Citation Format

Share Document