Effect of Waxy Wheat Flour Blends on the Quality of Fresh and Stale Bread

2009 ◽  
Vol 8 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Peng QIN ◽  
Chuan-xi MA ◽  
Rong-lin WU ◽  
Zhi-you KONG ◽  
Bo-qiao ZHANG
Keyword(s):  
2007 ◽  
Vol 6 (10) ◽  
pp. 1275-1282 ◽  
Author(s):  
Peng QIN ◽  
Shun-he CHENG ◽  
Chuan-xi MA

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Udeme Joshua Josiah Ijah ◽  
Helen Shnada Auta ◽  
Mercy Oluwayemisi Aduloju ◽  
Sesan Abiodun Aransiola

Dehydrated uncooked potato (Irish and sweet) flour was blended by weight with commercial wheat flour at 0 to 10% levels of substitution to make bread. Comparative study of the microbial and nutritional qualities of the bread was undertaken. The total aerobic bacterial counts ranged from 3.0 × 105 cfu/g to 1.09 × 106 cfu/g while the fungal counts ranged from 8.0 × 101 cfu/g to 1.20 × 103 cfu/g of the sample. Coliforms were not detected in the bread. Bacteria isolated were species ofBacillus,Staphylococcus, andMicrococcuswhile fungi isolates were species ofAspergillus,Penicillium, Rhizopus, andMucor. The mean sensory scores (color, aroma, taste, texture, and general acceptability) were evaluated. The color of the bread baked from WF/IPF2(wheat/Irish potato flour, 95 : 5%) blend was preferred to WF (wheat flour, 100%) while WF/SPF1(wheat/sweet potato flour, 100%) and WF/IPF1(wheat/Irish potato flour, 90 : 10%) aroma were preferred to WF. However, the bread baked from WF, WF/IPF2(wheat flour/Irish potato flour, 95 : 5%), and WF/SPF2(wheat/sweet potato flour, 95 : 5%) was more acceptable than other blends. The use of hydrated potato flour in bread making is advantageous due to increased nutritional value, higher bread yield, and reduced rate of staling.


2002 ◽  
Vol 79 (2) ◽  
pp. 178-182 ◽  
Author(s):  
Monisha Bhattacharya ◽  
Sofia V. Erazo-Castrejón ◽  
Douglas C. Doehlert ◽  
Michael S. McMullen
Keyword(s):  

2016 ◽  
pp. 5-8
Author(s):  
Erika Ács ◽  
Lajos Bóna ◽  
Bernadett Langó ◽  
Péter Pepó ◽  
István Petróczi

Triticale is likely used in many countries in human consumption, due to its advantageous agronomical and nutritional properties mostly in blends. The baking quality of blends depends not just on the proportions of the used flours but also on their individual quality what can be influenced by fertilizer treatments. 22 flour blends were prepared with commercial wheat flour and triticale wholemeal flour in proportions from 0% to 100%. The triticale was treated with different amount of fertilizers (N30P30K30, N60P0K0). Changes of wet gluten contents and extensograph parameters of the blends were determined. The quality of blends significantly depends on the fertilizer treatment of triticale beside the proportions of the flours. When the N60P0K0 treated triticale was used in blends, wet gluten and extensibility values were significantly higher, but in case of resistant to extensions (Rmax) the N30P30K30 treated samples gave higher values. The measured values of wet gluten and extensibility were above the expected values (synergism), while in the case of resistance to extension the expected values were higher than the measured values (antagonism).


2002 ◽  
Vol 79 (2) ◽  
pp. 210-214 ◽  
Author(s):  
Ralph D. Waniska ◽  
Robert A. Graybosch ◽  
Janet L. Adams
Keyword(s):  

2017 ◽  
Vol 75 ◽  
pp. 10-16 ◽  
Author(s):  
Chunli Jia ◽  
Wendan Yang ◽  
Zixuan Yang ◽  
Omedi Jacob Ojobi
Keyword(s):  

2016 ◽  
Vol 5 (4) ◽  
pp. 26 ◽  
Author(s):  
Ojinnaka, Dong ◽  
Emeh, T. C. ◽  
Okorie, S. U.

<p>The purpose of this research was to develop and evaluate a snack product (chin-chin) from composite maize-wheat flour blends enriched with edible palm weevil (<em>Rhyhnchophorus phoenicis</em>) paste. The maize-wheat chin-chin enriched with <em>R. phoenicis </em>were subjected to acceptability test using twenty member semi-trained panelist. The moisture, fat, protein and carbohydrate compositions of the snack samples had significant differences in their values. Sample 5M5R90W (containing 5% maize flour and <em>Rhyhnchophorus phoenicis </em>paste and 90% wheat flour) had the highest protein value of 19.05% while the least value 9.39% was obtained by sample 100M0R0W (100% maize flour alone). Sample 100M0R0W containing 100% maize flour also had the highest carbohydrate value of 75.24%. There was no significant difference in the ash and crude fiber contents of the chin-chin samples enriched with edible palm weevil paste. There were significant differences (P ≤ 0.05) in the functional properties of maize-wheat composite flour blends. Their wettability values ranged from 46.67 – 200 while the swelling index, bulk density and oil absorption capacity showed no significant difference in their values. The result of the mineral analysis showed phosphorus, magnesium and sodium had significant differences in their values in the range of 317.55 – 376.75mg/100g; 5.60 -13.60mg/100g;59.0 – 70.3mg/100g, respectively. There were no significant differences in the sensory attributes of the chin-chin samples. The result showed that an acceptable chin-chin product can be processed with the inclusion of the larva of edible palm weevil with maize-wheat composite flour to enhance the nutritional quality of the product.</p>


Author(s):  
N. J. Deedam ◽  
M. A. China ◽  
H. I. Wachukwu

Objective: The objective of this study was to investigate the proximate composition, sensory properties and microbial quality of chin-chin developed from wheat and African walnut flour blends as a means of achieving household food security. Methodology: African walnut was processed into flour. Chin-chin was prepared from blends of wheat and African walnut flours using 90:10, 80:20, 70:30, 60:40, 50:50 of wheat flour to African walnut flour (AWF), and 100% wheat flour as control. Samples were subjected to sensory evaluation within 30 min of production. Proximate analysis was carried out using standard methods. The samples were also stored for 3 weeks and evaluated at weekly intervals for total bacterial and fungal counts. Results:  composition of the chin-chin revealed a significant (p<0.05) increase in ash (0.42-1.38%), fat (34.39-40.03%), crude protein (5.53-7.95% protein), crude fibre (0.98-1.86%), and energy contents (402.65-414.08kcal) with a decrease in moisture (3.31-4.85%) and carbohydrate (45.59-53.84%) . Sensory analysis of the chin-chin showed that the control chin-chin was more preferred than all other samples. This was followed closely by chin-chin substituted with 10% African walnut flour having mean scores above 6 for all sensory attributes. Total bacterial counts (TBCs) and fungal counts (TFCs) of the chin-chin samples were observed to increase during storage. TBCs and TFCs of chin-chin samples after 3 weeks of storage ranged from 6.00×103-8.50×103cfu/g and 6.80×103-8.00×103cfu/g, respectively. The samples presented adequate microbiological conditions and were within recommended safe limit of microbial guidelines. Conclusion: The findings of the study showed that chin-chin of acceptable sensory attributes and improved nutritional content could be produced with up to 10% African walnut flour (AWF) level. In effect, chin-chin substituted with African walnut flour can be consumed by households thereby improving their nutritional status and eradicating food insecurity and malnutrition which is common among households.


Sign in / Sign up

Export Citation Format

Share Document