scholarly journals Geological conditions of natural gas accumulation and new exploration areas in the Mesoproterozoic to Lower Paleozoic of Ordos Basin, NW China

2019 ◽  
Vol 46 (5) ◽  
pp. 866-882 ◽  
Author(s):  
Jinhu DU ◽  
Xiangbo LI ◽  
Hongping BAO ◽  
Wanglin XU ◽  
Yating WANG ◽  
...  
2014 ◽  
Vol 41 (4) ◽  
pp. 437-448 ◽  
Author(s):  
Yanru GUO ◽  
Jinhua FU ◽  
Xinshan WEI ◽  
Wanglin XU ◽  
Liuyi SUN ◽  
...  

2016 ◽  
Vol 43 (4) ◽  
pp. 591-601 ◽  
Author(s):  
Dan LIU ◽  
Wenzheng ZHANG ◽  
Qingfen KONG ◽  
Ziqi FENG ◽  
Chenchen FANG ◽  
...  

2014 ◽  
Vol 11 (2) ◽  
pp. 147-156
Author(s):  
Yifeng Wang ◽  
Jian Li ◽  
Jianfa Chen ◽  
Chengshan Li

It is shown in natural gas proportion mixing experiments that a mixed-source natural gas is the physical combination of end member gas. Both the carbon and hydrogen isotopes in the mixed-source natural gas can be expressed by the weighted average of corresponding components content and isotopes of end member gas. Under certain geological setting, the selection of end member gas is the key to mixed-source ratio calculation. Then, it's better to estimate the mixed-source ratio with δ13C1 and component data according to the weighted average calculation formula. The analysis on natural gas geochemistry characteristics show that the natural gas extracted from Jingbian Gas Field in the Ordos Basin is mainly an upper Paleozoic coal-derived gas. In the analysis of geological conditions for reservoir forming and characteristics of natural gas, natural gas from Longtan 1 Well and Tao 6 Well were selected as the end member gases of lower Paleozoic oil-type gas and upper Paleozoic coal-type gas respectively to calculate the mixed-source ratio of natural gas in Jingbian Gas Field. The ratio of upper Paleozoic coal-derived gas mostly accounts for over 70% and its average ratio reaches 81%. Therefore, the exploration of natural gas of Ordos Basin should be focused on the upper palaeozoic coal source rock, and attention should be paid to the matching of coal source rock in the exploration of weathered crust gas deposit.


Author(s):  
Zhenhua Li ◽  
Ke Gai ◽  
Lan Yu ◽  
Suya Zhang ◽  
Ning Sun ◽  
...  

2017 ◽  
Vol 35 (2) ◽  
pp. 218-236 ◽  
Author(s):  
Xiaoqi Wu ◽  
Jianhui Zhu ◽  
Chunhua Ni ◽  
Kuang Li ◽  
Yanqing Wang ◽  
...  

The molecular composition, stable carbon and hydrogen isotopes, and light hydrocarbons of the Lower Paleozoic natural gas in the Daniudi gas field in the Ordos Basin were investigated to study the geochemical characteristics. The Lower Paleozoic gas in the Daniudi gas field displays methane contents of 87.41–93.34%, dryness coefficients (C1/C1–5) ranging from 0.886 to 0.978, δ13C1 and δ13C2 values ranging from −40.3 to −36.4‰, with an average of −38.3‰, and from −33.6 to −24.2‰, with an average of −28.4‰, respectively, and δD1 values ranging from −197 to −160‰. The alkane gas generally displays positive carbon and hydrogen isotopic series, and the C7 and C5–7 light hydrocarbons of the Lower Paleozoic gas are dominated by methylcyclohexane and iso-alkanes, respectively. The Lower Paleozoic gas in the Daniudi gas field is mixed from coal-derived and oil-associated gases, similar to that observed in the Jingbian gas field. The oil-associated gas in the Lower Paleozoic gas is secondary oil cracking gas and displays a lower cracking extent than that in the Jingbian gas field. The coal-derived gas in the Lower Paleozoic gas in the Daniudi gas field migrated from the Upper Paleozoic gas through the window area where the iron–aluminum mudstone caprocks in the Upper Carboniferous Benxi Formation were missing. The oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field was probably derived from presalt source rocks in the Lower Ordovician Majiagou Formation rather than the limestone in the Upper Carboniferous Taiyuan Formation. It seems unlikely that the marlstone in the Upper Ordovician Beiguoshan Formation and shale in the Middle Ordovician Pingliang Formation on the western and southwestern margins of the Ordos Basin contributed to the oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Yong Shu ◽  
Shuxun Sang ◽  
Yuxiang Lin ◽  
Huiming Zheng

The Linxing area is located in the north of the eastern margin of the Ordos Basin, which has great resource potential for tight gas. In this paper, fluid inclusion analysis and basin modeling are the main means to clarify the gas accumulation mechanism of the Upper Paleozoic in the Linxing area. Petrographic analysis shows that fluid inclusions can be classified into 5 types: aqueous inclusions, hydrocarbon-bearing aqueous inclusions, hydrocarbon inclusions, crystal-bearing aqueous inclusions, and aqueous-carbonic inclusions. According to the statistical analysis of homogenization temperature and salinity of fluid inclusions, combined with the burial-thermal evolution, the study area was divided into 3 areas: the inner-magma baking area, the middle-anomal thermal area, and the outer-normal thermal area. The gas accumulation characteristics are differences among the 3 areas, the closer to Zijinshan magmatic pluton, the earlier gas accumulation period; and the vertical gas accumulation in the inner-magma baking area and the middle-anomal thermal area was not a slow and gradual process from bottom to top. The period from the Middle Jurassic to the Early Cretaceous is the key period for rapid pressure accumulation in the Upper Paleozoic reservoirs, which is consistent with the period of natural gas accumulation. The area near the Zijinshan magmatic pluton was the high fluid potential area during the gas accumulation period, which indicates that natural gas and other fluids migrated from Zijinshan magmatic pluton to the surrounding area. It is concluded that in the Linxing area, the Zijinshan magmatic pluton had a significant impact on natural gas accumulation, and the natural gas accumulation model under the control of magmatic thermal-tectonic effect was proposed.


Sign in / Sign up

Export Citation Format

Share Document