petrographic analysis
Recently Published Documents


TOTAL DOCUMENTS

569
(FIVE YEARS 209)

H-INDEX

18
(FIVE YEARS 4)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Dongna Liu ◽  
Yun Zhang ◽  
Anchao Zhou ◽  
Emmanuel Nnachi ◽  
Shuting Huo ◽  
...  

In order to ascertain the kaolinite crystallinity of Carboniferous Permian coal-measure kaolinite rocks, seven groups of fresh samples were collected from below the ground in the Xiaoyu mine, Datong coalfield. Microscopy, X-ray diffraction (XRD), differential thermal analysis (DTA), infrared (IR) spectroscopy and X-ray fluorescence (XRF) spectrometry methods were applied to the samples. The petrographic analysis results show that the kaolinite rocks are characterized as compact, phaneritic, clastic, sand-bearing, sandy and silty types; the kaolinite content in the Shanxi formation and upper Taiyuan formations was more than 95%, while it was 60–90% in the middle and lower Taiyuan formations. Based on the Hinckley index and the features of XRD, DTA and IR of kaolinites, crystallinity was classified as having three grades: ordered, slightly disordered and disordered. The kaolinites’ SiO2 /Al2O3 molar ratio was about 1.9–5.7, with a chemical index of alteration (CIA) of about 95.4–99.5. This research suggests that the kaolinite crystallinity correlates positively to its clay mineral content, purity and particle size, which are also related to the SiO2/Al2O3 molar ratio and CIA. The original sedimentary environment and weathering have a direct influence on kaolinite crystallinity, and the existence of organic matter is conducive to the stable existence of kaolinite. The study results have significance for the extraction and utilization of coal-measure kaolinite and the development of kaolinite crystallography and mineralogy.


2021 ◽  
Author(s):  
Amir Lala

Abstract A new gas reservoir includes the carbonates of upper-Cretaceous Formation in the Zohr oilfield of eastern Mediterranean Sea in Egypt. The main aim of this study is to assess the new carbonate reservoir by thin section study and estimate hydraulic flow units HFUs by smart system. This carbonate formation is now considered the most important gas reservoir in northern Egypt. In this paper five microfacies were identified based on microscope petrographic analysis. The examined rocks were formed in lagoon, shoal and open marine depositional environments. The relationships between microfacies and flow units are further evaluated in this study. The determination of such relationships have proven to be challenging due to petrographic complications arising from diagenetic processes. The correlation behind pore space percentage and permeability is important to recognize hydraulic flow in the reservoir under consideration in this study.


2021 ◽  
pp. 1-10
Author(s):  
Enyuan Wang ◽  
Yingei Xiong ◽  
Yibing Zhu ◽  
Jingwei Wu ◽  
Yuwu Gong ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7642
Author(s):  
Ivan Francklin ◽  
Rogério Pinto Ribeiro ◽  
Fernando Augusto Corrêa

The main objective was to determine the deleterious potential of quartzite mining tailings subjected to different ASR alkali–silica reaction tests. The studies included petrographic analysis, chemical analysis of cements, expansion tests in mortar bars and concrete prisms, and microstructural analysis. Petrographic analysis of quartzites indicated high percentages of deformed quartz (95%), and were classified as potentially reactive. Two types of HES high early strength cement with alkaline equivalents of 0.749% and 0.61%, respectively, were selected. Of the 8 samples analyzed by the accelerated method in mortars, only 2 quartzite samples and 1 diabasium sample indicated potentially reactive behavior. The accelerated and long-term methods in concrete prisms proved to be effective and were consistent with the deleterious potential of the samples. All analyzed samples were diagnosed with the ASR gel. In the microstructural analysis, in addition to the ASR products, other expansive products of late ettringite were detected. Reaction mitigation methods are proposed so that quartzite waste can be used as an alternative aggregate in concrete, and thus contribute to the reduction of mine tailings and, consequently, reduce the negative environmental impact from mining.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded dolomitic limestone interbedded with shale and marl. C- Thin to medium bedded limestone interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


2021 ◽  
Author(s):  
Khalil Ali Al Rashdi ◽  
Martin Wells ◽  
Nigel Clark

Abstract The giant Khazzan gas field, located in onshore Oman, has been under development since 2013 and in production since 2017. The field is currently producing 1 billion cubic feet of gas per day from the Cambro-Ordovician Barik Formation. The 80-metre-thick paralic reservoir is 4.5 kilometers deep and has undergone complex stages of diagenesis, hydrocarbon charge and structural regime changes. Reservoir quality (RQ) is typically classed as tight (average porosity 6 porosity unit, average permeability 1 Milidarcy) but locally exceeds expectations given the burial history reaching up to 12 pu and 100 Milidarcy. This RQ variability and complexity makes reservoir deliverability (RD) a key uncertainty impacting the field development scheme and ultimately the projected economics. This study aims to create and test hypotheses of RQ and RD controls to reduce uncertainty in production and increase reservoir development efficiency. In order to better understand the key controls on reservoir quality, an extensive set of core, petrophysical log analysis and production data were integrated with field-wide seismic and outcrop data to update the Barik stratigraphic, structural and depositional frameworks. Extensive analytical techniques, including reservoir quality modelling, petrographic analysis, X-ray diffraction, mercury injection capillary pressure and minipermeameter data were also integrated. Quartz cementation and compaction are the principal degrading controls on reservoir quality. The controls on quartz cementation are complex and variably inter-related, although in general it is ductile content, proximity to mudstone and feldspar content that are the best predictors of porosity and permeability when convolved. Minipermeameter data confirms that distance to mudstone, or sandstone thickness, is an important control on reservoir quality. Using normalized gamma ray log data, total and mean individual sandstone thickness were calculated for every Barik well in Khazzan and compared to well dynamic behavior which demonstrated a positive correlation. Areas with high mean individual sandstone thickness and total sandstone thickness frequently equate with relatively high IP30s (average well production at 1100 psi well head pressure for 30 days). In contrast, areas with high total sandstone thickness, but low mean individual sandstone thickness may only have moderate IP30s as those sandstones may be more quartz cemented. Reservoir deliverability risk maps based on total and mean individual sandstone thickness and IP30 were constructed. These maps give insight into regions of poor and good gas deliverability and have identified areas that may be untested or undeveloped that may have potential upside. The resultant reservoir deliverability understanding of the Barik formation is consistent with depositional environment, diagenetic understanding and well performance. It is a good example of integrating diverse static and dynamic data to improve reservoir understanding and has direct business impact.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


2021 ◽  
Author(s):  
Madhujya L Phukan ◽  
Saad A Siddiqi ◽  
Matthew J Robert

Abstract Objectives/Scope This study focuses on assessing the uncertainties related to sedimentological heterogeneity and the diagenetic variability within the gas-condensate reservoirs of the Shuaiba Formation, Sharjah, United Arab Emirates. Methods, Procedures, Process For characterizing the sedimentology of the Shuaiba Formation, a lithofacies scheme has been developed on the basis of Dunham's (1962) and Embry & Klovan classification (1971). The lithofacies are grouped on the basis of their genetic relationships which also correspond to their depositional environment, and are designated as lithofacies associations. A pore-scale fabric/textural investigation was completed using conventional thin-section microscopy and Scanning Electron Microscopy (SEM). Results, Observations, Conclusions The Shuaiba sediments are characterized by skeletal-rich wackestone/packstones to floatstones deposited in an inner ramp setting. The stacking pattern of the inner ramp deposits define broad third order trends observed across the studied field.These trends are relatable to the regional sequence stratigraphic framework of Sharland et al. (2001). In higher order sequences, lateral variations in lithology occur, defining the reservoir heterogeneity, which are most likely forced by topographic/hydrodynamic variation as well as sea level changes. Reservoir quality distribution is controlled by various factors, including the depositional texture and allochem assemblage (abundance, type, and size). Diagenetic alteration of the textures played an important role in determining overall reservoir quality. The pore enhancing phases are defined by dissolution events, where later stage dissolution was the dominant phase to enhance micropores and also to create meso- to macropores which partially to completely negated the effect of previous cementing phases. In these Shuaiba deposits, the porosity comprises common matrix-hosted as well as grain-hosted micropores along with variably distributed intraparticle and rare mouldic meso- to macropores. The measured porosity ranges from very poor to moderate (0.5-17%) while permeability is very low to low (<0.001-1.49 mD). The detailed petrographic analysis highlighted that changes in micritic fabric shows a variation in the reservoir properties. From SEM observations, it was noted that microcrystalline calcite crystals of polyhedral to sub-rounded morphologies with intercrystalline contacts ranging from facial to sub-punctic, which display relatively a good microporosity developement, whereas crystals that show anhedral compact character with coalescent/fused intercrystalline contacts are rarely associated with any microporosity. Novel/Additive Information In addition to SEM characterization, porosity data and elastic properties (e.g., Young's moduli) generated from the interpretation of the well-log data, were used to investigate the prospective relationship between the microporous carbonates and elastic properties. The comparisons highlight that an increase in porosity values results in a decrease of Young's moduli values, thereby reflecting a decrease in the stiffness of the rock. On the other hand, the increase in porosity maybe linked to the evolution of anhedral, compact, micritic fabric to polyhedral/sub-rounded micritic fabric. The understanding of this relationship provides a powerful tool to be utilized in reservoir architecture prediction based on integrating the sedimentological framework and diagenetic overprint.


2021 ◽  
Vol 11 (23) ◽  
pp. 11486
Author(s):  
Shahab Ud Din ◽  
Khan Muhammad ◽  
Muhammad Fawad Akbar Khan ◽  
Shahid Bashir ◽  
Muhammad Sajid ◽  
...  

Despite low spatial resolutions, thermal infrared bands (TIRs) are generally more suitable for mineral mapping due to fundamental tones and high penetration in vegetated areas compared to shortwave infrared (SWIR) bands. However, the weak overtone combinations of SWIR bands for minerals can be compensated by fusing SWIR-bearing data (Sentinel-2 and Landsat-8) with other multispectral data containing fundamental tones from TIR bands. In this paper, marble in a granitic complex in Mardan District (Khyber Pakhtunkhwa) in Pakistan is discriminated by fusing feature-oriented principal component selection (FPCS) obtained from the ASTER, Landsat-8 Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS) and Sentinel-2 MSI data. Cloud computing from Google Earth Engine (GEE) was used to apply FPCS before and after the decorrelation stretching of Landsat-8, ASTER, and Sentinel-2 MSI data containing five (5) bands in the Landsat-8 OLI and TIRS and six (6) bands each in the ASTER and Sentinel-2 MSI datasets, resulting in 34 components (i.e., 2 × 17 components). A weighted linear combination of selected three components was used to map granite and marble. The samples collected during field visits and petrographic analysis confirmed the remote sensing results by revealing the region’s precise contact and extent of marble and granite rock types. The experimental results reflected the theoretical advantages of the proposed approach compared with the conventional stacking of band data for PCA-based fusion. The proposed methodology was also applied to delineate granite deposits in Karoonjhar Mountains, Nagarparker (Sindh province) and the Kotah Dome, Malakand (Khyber Pakhtunkhwa Province) in Pakistan. The paper presents a cost-effective methodology by the fusion of FPCS components for granite/marble mapping during mineral resource estimation. The importance of SWIR-bearing components in fusion represents minor minerals present in granite that could be used to model the engineering properties of the rock mass.


Sign in / Sign up

Export Citation Format

Share Document