scholarly journals Gene Expression Profiling Related to Hyphal Growth in a Temperature-Sensitive Mutant of Magnaporthe oryzae

2013 ◽  
Vol 12 (12) ◽  
pp. 2189-2196
Author(s):  
Xue-song LI ◽  
Fei XU ◽  
Hong-kai WANG ◽  
Fu-cheng LIN
2003 ◽  
Vol 77 (5) ◽  
pp. 3238-3246 ◽  
Author(s):  
Makoto Inoue ◽  
Yumiko Tokusumi ◽  
Hiroshi Ban ◽  
Takumi Kanaya ◽  
Tsuyoshi Tokusumi ◽  
...  

ABSTRACT The formation of nontransmissible virus-like particles (NTVLP) by cells infected with F-deficient Sendai virus (SeV/ΔF) was found to be temperature sensitive. Analysis by hemagglutination assays and Western blotting demonstrated that the formation of NTVLP at 38°C was about 1/100 of that at 32°C, whereas this temperature-sensitive difference was only moderate in the case of F-possessing wild-type SeV. In order to reduce the NTVLP formation with the aim of improving SeV for use as a vector for gene therapy, amino acid substitutions found in temperature-sensitive mutant SeVs were introduced into the M (G69E, T116A, and A183S) and HN (A262T, G264R, and K461G) proteins of SeV/ΔF to generate SeV/MtsHNtsΔF. The use of these mutations allows vector production at low temperature (32°C) and therapeutic use at body temperature (37°C) with diminished NTVLP formation. As expected, the formation of NTVLP by SeV/MtsHNtsΔF at 37°C was decreased to about 1/10 of that by SeV/ΔF, whereas the suppression of NTVLP formation did not cause either enhanced cytotoxicity or reduced gene expression of the vector. The vectors showed differences with respect to the subcellular distribution of M protein in the infected cells. Clear and accumulated immunocytochemical signals of M protein on the cell surface were not observed in cells infected by SeV/ΔF at an incompatible temperature, 38°C, or in those infected by SeV/MtsHNtsΔF at 37 or 38°C. The absence of F protein in SeV/ΔF and the additional mutations in M and HN in SeV/MtsHNtsΔF probably weaken the ability to transport M protein to the plasma membrane, leading to the diminished formation of NTVLP.


2002 ◽  
Vol 69 ◽  
pp. 135-142 ◽  
Author(s):  
Elena M. Comelli ◽  
Margarida Amado ◽  
Steven R. Head ◽  
James C. Paulson

The development of microarray technology offers the unprecedented possibility of studying the expression of thousands of genes in one experiment. Its exploitation in the glycobiology field will eventually allow the parallel investigation of the expression of many glycosyltransferases, which will ultimately lead to an understanding of the regulation of glycoconjugate synthesis. While numerous gene arrays are available on the market, e.g. the Affymetrix GeneChip® arrays, glycosyltransferases are not adequately represented, which makes comprehensive surveys of their gene expression difficult. This chapter describes the main issues related to the establishment of a custom glycogenes array.


2007 ◽  
Vol 177 (4S) ◽  
pp. 93-93
Author(s):  
Toshiyuki Tsunoda ◽  
Junichi Inocuchi ◽  
Darren Tyson ◽  
Seiji Naito ◽  
David K. Ornstein

2004 ◽  
Vol 171 (4S) ◽  
pp. 198-199 ◽  
Author(s):  
Ximing J. Yang ◽  
Jun Sugimura ◽  
Maria S. Tretiakova ◽  
Bin T. Teh

Sign in / Sign up

Export Citation Format

Share Document