Seismic Hazard and Risk Analysis

2021 ◽  
Author(s):  
Jack Baker ◽  
Brendon Bradley ◽  
Peter Stafford

Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jörn Behrens ◽  
Finn Løvholt ◽  
Fatemeh Jalayer ◽  
Stefano Lorito ◽  
Mario A. Salgado-Gálvez ◽  
...  

Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach.


2005 ◽  
Vol 27 (3) ◽  
pp. 284-285
Author(s):  
Bruce R. Ellingwood

2020 ◽  
Author(s):  
Joern Behrens ◽  
Inigo Aniel-Quiroga ◽  
Sebastiano D'Amico ◽  
Frederic Dias ◽  
Ira Didenkulova ◽  
...  

<p>Recent tsunami disasters revealed severe gaps between the anticipated level of hazard and the true extent of the event, with resulting loss of life and property. The severe consequences were underestimated in part due to the lack of rigorous and accepted hazard analysis methods and large uncertainty in forecasting the tsunami source mechanism and strength. Uncertainty and underestimation of the hazard and risk resulted in insufficient preparedness measures. While there is no absolute protection against disasters of the scale of mega tsunamis, a more accurate analysis of the potential risk can help to minimize losses from tsunami.<br>After the major events in 2004 and 2011 many new initiatives originated novel methods for tsunami hazard and risk analysis. However, rigorous performance assessment and evaluation – with respect to guiding principles in tsunami hazard and risk analysis – has not been conducted. In particular, comprehensive uncertainty assessments and related standards are required in order to implement more robust and reliable hazard analysis strategies and, ultimately, better mitigate tsunami impact. This is the core challenge of the proposed COST Action Accelerating Global science In Tsunami HAzard and Risk analysis (AGITHAR).<br>In our presentation we will demonstrate first results of the Action, assessing research gaps, open questions, and a very coarse roadmap for future research.</p>


2021 ◽  
pp. 123-136
Author(s):  
Bruce Lyon ◽  
Georgi Popov

Sign in / Sign up

Export Citation Format

Share Document