Treatment of Epithelial Ovarian Cancers, Fallopian Tube Cancers and Peritoneal Surface Cancers

2021 ◽  
pp. 357-365
Author(s):  
Céline Montavon Sartorius ◽  
Viola Heinzelmann-Schwarz
2017 ◽  
Vol 107 ◽  
pp. 16-21 ◽  
Author(s):  
Jan Rohozinski ◽  
Conception Diaz-Arrastia ◽  
Creighton L. Edwards

2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published and public microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding SLIT and NTRK-like family member 3, SLITRK3, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. SLITRK3 expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. SLITRK3 expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of SLITRK3 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. SLITRK3 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding LSM4 homolog, U6 small nuclear RNA and mRNA degradation associated, LSM4, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. LSM4 expression was significantly higher in high-grade serous ovarian tumors relative to normal fallopian tube. LSM4 expression correlated with overall survival in patients with ovarian cancer. These data indicate that expression of LSM4 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. LSM4 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published and public microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding murine retrovirus integration site 1 homolog, MRVI1, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. MRVI1 expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. MRVI1 expression correlated with overall survival in patients with ovarian cancer. These data indicate that expression of MRVI1 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. MRVI1 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding sarcospan, SSPN, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. SSPN expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. SSPN expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of SSPN is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. SSPN may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding phosphodiesterase 5A, PDE5A, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. PDE5A expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. PDE5A expression correlated with progression-free survival in patients with p53 mutant ovarian cancer. These data indicate that expression of PDE5A is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. PDE5A may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2019 ◽  
Vol 15 (7) ◽  
pp. 375-382 ◽  
Author(s):  
Marina Stasenko ◽  
Olga Fillipova ◽  
William P. Tew

Primary fallopian tube carcinoma is a rare and difficult to cure disease. It is often grouped under the epithelial ovarian cancer umbrella, together with primary ovarian and peritoneal carcinomas. More recent evidence has suggested that epithelial ovarian cancers originate from a fallopian tube precursor. The mainstay of treatment is surgical cytoreduction and platinum-based chemotherapy. There is much debate over the best timing for surgery and the best approach to delivering the chemotherapy: traditional intravenous once every 3 weeks regimen, versus intraperitoneal, versus dose-dense intravenous regimens. Although these debates continue, novel targeted therapies, including bevacizumab and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors, have emerged. PARP inhibitors are particularly efficacious in patients with BRCA1/2 gene mutations, and their use has been shown to prolong patient survival. This article reviews the pathologic etiology; describes the heredity, treatment challenges, and controversies; and summarizes novel therapies in primary fallopian tube carcinoma.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published and public microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding potassium voltage-gated channel subfamily B member 1, KCNB1, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. KCNB1 expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. KCNB1 expression correlated with progression-free survival in patients with p53 mutant ovarian cancer. These data indicate that expression of KCNB1 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. KCNB1 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding trophinin associated protein, TROAP, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. TROAP expression was significantly higher in high-grade serous ovarian tumors relative to normal fallopian tube. TROAP expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of TROAP is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. TROAP may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


Sign in / Sign up

Export Citation Format

Share Document