Density Estimation with Gaussian Mixture Models

2020 ◽  
pp. 314-334
2003 ◽  
Vol 15 (2) ◽  
pp. 469-485 ◽  
Author(s):  
J. J. Verbeek ◽  
N. Vlassis ◽  
B. Kröse

This article concerns the greedy learning of gaussian mixtures. In the greedy approach, mixture components are inserted into the mixture one aftertheother.We propose a heuristic for searching for the optimal component to insert. In a randomized manner, a set of candidate new components is generated. For each of these candidates, we find the locally optimal new component and insert it into the existing mixture. The resulting algorithm resolves the sensitivity to initialization of state-of-the-art methods, like expectation maximization, and has running time linear in the number of data points and quadratic in the (final) number of mixture components. Due to its greedy nature, the algorithm can be particularly useful when the optimal number of mixture components is unknown. Experimental results comparing the proposed algorithm to other methods on density estimation and texture segmentation are provided.


2020 ◽  
Vol 25 (4) ◽  
pp. 622-641
Author(s):  
Jurgita Arnastauskaitė ◽  
Tomas Ruzgas

Flexible and reliable probability density estimation is fundamental in unsupervised learning and classification. Finite Gaussian mixture models are commonly used for this purpose. However, the parametric form of the distribution is not always known. In this case, non-parametric density estimation methods are used. Usually, these methods become computationally demanding as the number of components increases. In this paper, a comparative study of accuracy of some nonparametric density estimators is made by means of simulation. The following approaches have been considered: an adaptive bandwidth kernel estimator, a projection pursuit estimator, a logspline estimator, and a k-nearest neighbor estimator. It was concluded that data clustering as a pre-processing step improves the estimation of mixture densities. However, in case data does not have clearly defined clusters, the pre-preprocessing step does not give that much of advantage. The application of density estimators is illustrated using municipal solid waste data collected in Kaunas (Lithuania). The data distribution is similar (i.e., with kurtotic unimodal density) to the benchmark distribution introduced by Marron and Wand. Based on the homogeneity tests it can be concluded that distributions of the municipal solid waste fractions in Kutaisi (Georgia), Saint-Petersburg (Russia), and Boryspil (Ukraine) are statistically indifferent compared to the distribution of waste fractions in Kaunas. The distribution of waste data collected in Kaunas (Lithuania) follows the general observations introduced by Marron and Wand (i.e., has one mode and certain kurtosis).


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1369
Author(s):  
Alice Crawford

Atmospheric Lagrangian particle dispersion models, LPDM, simulate the dispersion of passive tracers in the atmosphere. At the most basic level, model output consists of the position of computational particles and the amount of mass they represent. In order to obtain concentration values, this information is then converted to a mass distribution via density estimation. To date, density estimation is performed with a nonparametric method so that output consists of gridded concentration data. Here we introduce the use of Gaussian mixture models, GMM, for density estimation. We compare to the histogram or bin counting method for a tracer experiment and simulation of a large volcanic ash cloud. We also demonstrate the use of the mixture model for automatic identification of features in a complex plume such as is produced by a large volcanic eruption. We conclude that use of a mixture model for density estimation and feature identification has potential to be very useful.


2017 ◽  
Vol 34 (10) ◽  
pp. 1399-1414 ◽  
Author(s):  
Wanxia Deng ◽  
Huanxin Zou ◽  
Fang Guo ◽  
Lin Lei ◽  
Shilin Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document