Chemical Synthesis of Aerogels from Polymeric Precursors

2021 ◽  
pp. 60-91
Author(s):  
X. Qiu ◽  
A. K. Datye ◽  
T. T. Borek ◽  
R. T. Paine

Boron nitride derived from polymer precursors is of great interest for applications such as fibers, coatings and novel forms such as aerogels. The BN is prepared by the polymerization of functionalized borazine and thermal treatment in nitrogen at 1200°C. The BN powders obtained by this route are invariably trubostratic wherein the sheets of hexagonal BN are randomly oriented to yield the so-called turbostratic modification. Fib 1a and 1b show images of BN powder with the corresponding diffraction pattern in fig. 1c. The (0002) reflection from BN is seen as a diffuse ring with occational spots that come from crystals of BN such as those shown in fig. 1b. The (0002) lattice fringes of BN seen in these powders are the most characteristic indication of the crystallinity of the BN.


Author(s):  
Sidney W. Fox ◽  
Kaoru Harada ◽  
Gottfried Krampitz ◽  
Tadao Hayakawa ◽  
Charles Ray Windsor
Keyword(s):  

2012 ◽  
Vol 2 (2) ◽  
pp. 147-149
Author(s):  
Tanaji Dnyanadev Padalkar ◽  
Keyword(s):  

2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


Sign in / Sign up

Export Citation Format

Share Document