Magnetic Fields in the Early Universe

2021 ◽  
pp. 471-518
Author(s):  
MARK HINDMARSH ◽  
M. CHRISTENSSON ◽  
A. BRANDENBURG

2002 ◽  
Vol 12 ◽  
pp. 709-711 ◽  
Author(s):  
James M. Stone

AbstractA very brief review is given of processes that may be responsible for the generation of initial seed magnetic fields in the early Universe, and that can amplify those fields to the levels observed in galaxies in the current epoch.


1973 ◽  
Vol 30 (5) ◽  
pp. 188-190 ◽  
Author(s):  
E. R. Harrison

2018 ◽  
Vol 14 (A30) ◽  
pp. 295-298
Author(s):  
Tina Kahniashvili ◽  
Axel Brandenburg ◽  
Arthur Kosowsky ◽  
Sayan Mandal ◽  
Alberto Roper Pol

AbstractBlazar observations point toward the possible presence of magnetic fields over intergalactic scales of the order of up to ∼1 Mpc, with strengths of at least ∼10−16 G. Understanding the origin of these large-scale magnetic fields is a challenge for modern astrophysics. Here we discuss the cosmological scenario, focussing on the following questions: (i) How and when was this magnetic field generated? (ii) How does it evolve during the expansion of the universe? (iii) Are the amplitude and statistical properties of this field such that they can explain the strengths and correlation lengths of observed magnetic fields? We also discuss the possibility of observing primordial turbulence through direct detection of stochastic gravitational waves in the mHz range accessible to LISA.


2008 ◽  
Vol 4 (S259) ◽  
pp. 529-538 ◽  
Author(s):  
Eduardo Battaner ◽  
Estrella Florido

AbstractThere is increasing evidence that intense magnetic fields exist at large redshifts. They could arise after galaxy formation or in very early processes, such as inflation or cosmological phase transitions, or both. Early co-moving magnetic strengths in the range 1-10 nG could be present at recombination. The possibilities to detect them in future CMB experiments are discussed, mainly considering their impact in the anisotropy spectra as a result of Faraday rotation and Alfven waves. Magnetic fields this magnitude could also have a non-negligible influence in determining the filamentary large scale structure of the Universe.


1996 ◽  
Vol 54 (2) ◽  
pp. 1291-1300 ◽  
Author(s):  
Axel Brandenburg ◽  
Kari Enqvist ◽  
Poul Olesen

2021 ◽  
Vol 922 (1) ◽  
pp. 63
Author(s):  
Shuhei Kashiwamura ◽  
Yutaka Ohira

Abstract We present new-generation mechanisms of magnetic fields in supernova remnant shocks propagating to partially ionized plasmas in the early universe. Upstream plasmas are dissipated at the collisionless shock, but hydrogen atoms are not dissipated because they do not interact with electromagnetic fields. After the hydrogen atoms are ionized in the shock downstream region, they become cold proton beams that induce the electron return current. The injection of the beam protons can be interpreted as an external force acting on the downstream proton plasma. We show that the effective external force and the electron return current can generate magnetic fields without any seed magnetic fields. The magnetic field strength is estimated to be B ∼ 10 − 14 – 10 − 11 G , where the characteristic length scale is the mean free path of charge exchange, ∼ 10 15 cm . Since protons are marginally magnetized by the generated magnetic field in the downstream region, the magnetic field could be amplified to larger values and stretched to larger scales by turbulent dynamo and expansion.


Author(s):  
L. C. Garcia de Andrade

Several spacetime metrics in teleparallel geometry of Einstein like unified field theory (UFT) are presented. Cosmic magnetic fields are obtained in terms of the early universe torsion and other stages of the universe. For example, in one of the metrics, integration of the 2-form torsion 0-component is written in terms of magnetic flux, from Faraday’s induced equation. These ideas were obtained from a recent paper we published [Class. Quantum Grav. (2015)] on non-stationary teleparallel metrics, where at coherent length of 10 kpc a magnetic field of [Formula: see text] Gauss is obtained. At early universe, a torsion of 1 MeV leads us to a magnetic field of the order of [Formula: see text] Gauss which is weaker than the Bierman battery effect magnetic field of the order of [Formula: see text] Gauss. Hence this new metric indicates that unifield theory metrics a la Schrödinger may be used to obtain primordial magnetic fields. Other tests of this metric led to the nowadays magnetic field of [Formula: see text] Gauss from the torsion at present universe (at the laboratory using dual maser obtained by Kostelecky et al. [Phys. Rev. Lett.]) of [Formula: see text] GeV. Cartan torsion has been frequently associated to topological defects in crystals or in pseudo-magnetic torsional fields. In this paper, we discuss how from teleparallel gravity one may obtain a theory of electromagnetism from metrics in spacetime. Topological defects given by Letelier [Class. Quantum Grav. 12 (1995) 1133] and Tod [Class. Quantum Grav. 11(5) (1994)] metrics can also be associated with pseudo-magnetic fields. Electromagnetism is geometrized via a bimetric theory of gravity where one metric is responsible for Ampere’s law and the other by the Faraday induction equation which gives rise to dynamo equation.


Sign in / Sign up

Export Citation Format

Share Document