scholarly journals Benefit and performance impact analysis of using hydrogen fuel cell powered e-taxi system on A320 class airliner

2019 ◽  
Vol 123 (1261) ◽  
pp. 378-397
Author(s):  
J. A. Stockford ◽  
C. Lawson ◽  
Z. Liu

ABSTRACTThis paper presents the work carried out to evaluate the benefits and performance impacts of introducing a hydrogen fuel cell powered electric taxiing system to a conventional short-haul aircraft. Tasks carried out in this research and reported in this paper include the initial system design, hydrogen tank initial sizing, calculation of the impact on fuel burn and emissions and the evaluation of the effects on Direct Operating Cost (DOC). The Airbus A320 has been selected as the datum aircraft for sizing the system, and the benefits analysis is particularly focused on the fleet composition and financial data of a Europe-based, low-cost, large-scale A320 family operator in 2016. The maximum power capacity of 400 kW has been sized based on the rolling friction coefficient of 0.02. Based on the operator’s 2016 financial, up to 1% fuel reduction can be achieved using the proposed system and the reduction in total maintenance cost is expected to be up to 7.3%. Additionally, up to 5.97% net profit improvement is estimated in comparison with the annual after-tax profit of the datum operator in 2016.

2021 ◽  
Vol 66 (1) ◽  
pp. 1-13
Author(s):  
Wanyi Ng ◽  
Mrinalgouda Patil ◽  
Anubhav Datta

The objective of this paper is to study the impact of combining hydrogen fuel cells with lithium-ion batteries through an ideal power-sharing architecture to mitigate the poor range and endurance of battery powered electric vertical takeoff and landing (eVTOL) aircraft. The benefits of combining the two sources is first illustrated by a conceptual sizing of an electric tiltrotor for an urban air taxi mission of 75 mi cruise and 5 min hover. It is shown that an aircraft of 5000–6000 lb gross weight can carry a practical payload of 500 lb (two to three seats) with present levels of battery specific energy (150 Wh/kg) if only a battery–fuel cell hybrid power plant is used, combined in an ideal power-sharing manner, as long as high burst C-rate batteries are available (4–10 C). A power plant using batteries alone can carry less than half the payload; use of fuel cells alone cannot lift off the ground. Next, the operation of such a system is demonstrated using systematic hardware testing. The concepts of unregulated and regulated power-sharing architectures are described. A regulated architecture that can implement ideal power sharing is built up in a step-by-step manner. It is found only two switches and three DC-to-DC converters are necessary, and if placed appropriately, are sufficient to achieve the desired power flow. Finally, a simple power system model is developed, validated with test data and used to gain fundamental understanding of power sharing.


2013 ◽  
Vol 45 (23) ◽  
pp. 109-119 ◽  
Author(s):  
M. S. Dara ◽  
A. Lam ◽  
K. Fatih ◽  
D. P. Wilkinson

2013 ◽  
Vol 161 (1) ◽  
pp. F105-F113 ◽  
Author(s):  
Mohammad S. Dara ◽  
Khalid Fatih ◽  
David P. Wilkinson

2021 ◽  
Vol 18 (2) ◽  
pp. 217-234
Author(s):  
Md Shehan Habib ◽  
Paroma Arefin ◽  
Md Abdus Salam ◽  
Kawsar Ahmed ◽  
Md Sahab Uddin ◽  
...  

Hydrogen fuel cell technology is now being researched extensively globally to provide a stable renewable energy source in the future. New research is aiding in improving performance, endurance, cost-efficiency, and the elimination of fuel cell limitations. Throughout the development process, the many aspects impacting the features, efficiency, durability, and cost of a fuel cell must be examined in a specific method. This review study looked at the impact of several variables on hydrogen fuel cell durability (HFC). In every sphere of fuel cell application, long-term operation is a must to make this electrochemical cell work. The major durability-enhancing aspects of a fuel cell include temperature, catalytic decay, contaminants, thermal energy and water maintenance, and fuel cell component design.


Sign in / Sign up

Export Citation Format

Share Document